This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "diagonal commutation" of divisor sums analogous to fsum0diag . (Contributed by Mario Carneiro, 2-Jul-2015) (Revised by Mario Carneiro, 8-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fsumdvdsdiag.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| Assertion | fsumdvdsdiaglem | ⊢ ( 𝜑 → ( ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) → ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumdvdsdiag.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 2 | breq1 | ⊢ ( 𝑥 = 𝑘 → ( 𝑥 ∥ 𝑁 ↔ 𝑘 ∥ 𝑁 ) ) | |
| 3 | elrabi | ⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } → 𝑘 ∈ ℕ ) | |
| 4 | 3 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ∈ ℕ ) |
| 5 | 4 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ∈ ℤ ) |
| 6 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑁 ∈ ℕ ) |
| 7 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) | |
| 8 | dvdsdivcl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 10 | elrabi | ⊢ ( ( 𝑁 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → ( 𝑁 / 𝑗 ) ∈ ℕ ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑗 ) ∈ ℕ ) |
| 12 | 11 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑗 ) ∈ ℤ ) |
| 13 | 6 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑁 ∈ ℤ ) |
| 14 | breq1 | ⊢ ( 𝑥 = 𝑘 → ( 𝑥 ∥ ( 𝑁 / 𝑗 ) ↔ 𝑘 ∥ ( 𝑁 / 𝑗 ) ) ) | |
| 15 | 14 | elrab | ⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ∥ ( 𝑁 / 𝑗 ) ) ) |
| 16 | 15 | simprbi | ⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } → 𝑘 ∥ ( 𝑁 / 𝑗 ) ) |
| 17 | 16 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ∥ ( 𝑁 / 𝑗 ) ) |
| 18 | breq1 | ⊢ ( 𝑥 = ( 𝑁 / 𝑗 ) → ( 𝑥 ∥ 𝑁 ↔ ( 𝑁 / 𝑗 ) ∥ 𝑁 ) ) | |
| 19 | 18 | elrab | ⊢ ( ( 𝑁 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↔ ( ( 𝑁 / 𝑗 ) ∈ ℕ ∧ ( 𝑁 / 𝑗 ) ∥ 𝑁 ) ) |
| 20 | 19 | simprbi | ⊢ ( ( 𝑁 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → ( 𝑁 / 𝑗 ) ∥ 𝑁 ) |
| 21 | 9 20 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑗 ) ∥ 𝑁 ) |
| 22 | 5 12 13 17 21 | dvdstrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ∥ 𝑁 ) |
| 23 | 2 4 22 | elrabd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 24 | breq1 | ⊢ ( 𝑥 = 𝑗 → ( 𝑥 ∥ ( 𝑁 / 𝑘 ) ↔ 𝑗 ∥ ( 𝑁 / 𝑘 ) ) ) | |
| 25 | elrabi | ⊢ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → 𝑗 ∈ ℕ ) | |
| 26 | 25 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ∈ ℕ ) |
| 27 | 26 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ∈ ℤ ) |
| 28 | 26 | nnne0d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ≠ 0 ) |
| 29 | dvdsmulcr | ⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑁 / 𝑗 ) ∈ ℤ ∧ ( 𝑗 ∈ ℤ ∧ 𝑗 ≠ 0 ) ) → ( ( 𝑘 · 𝑗 ) ∥ ( ( 𝑁 / 𝑗 ) · 𝑗 ) ↔ 𝑘 ∥ ( 𝑁 / 𝑗 ) ) ) | |
| 30 | 5 12 27 28 29 | syl112anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( ( 𝑘 · 𝑗 ) ∥ ( ( 𝑁 / 𝑗 ) · 𝑗 ) ↔ 𝑘 ∥ ( 𝑁 / 𝑗 ) ) ) |
| 31 | 17 30 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑘 · 𝑗 ) ∥ ( ( 𝑁 / 𝑗 ) · 𝑗 ) ) |
| 32 | 6 | nncnd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑁 ∈ ℂ ) |
| 33 | 26 | nncnd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ∈ ℂ ) |
| 34 | 32 33 28 | divcan1d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( ( 𝑁 / 𝑗 ) · 𝑗 ) = 𝑁 ) |
| 35 | 4 | nncnd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ∈ ℂ ) |
| 36 | 4 | nnne0d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑘 ≠ 0 ) |
| 37 | 32 35 36 | divcan2d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑘 · ( 𝑁 / 𝑘 ) ) = 𝑁 ) |
| 38 | 34 37 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( ( 𝑁 / 𝑗 ) · 𝑗 ) = ( 𝑘 · ( 𝑁 / 𝑘 ) ) ) |
| 39 | 31 38 | breqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑘 · 𝑗 ) ∥ ( 𝑘 · ( 𝑁 / 𝑘 ) ) ) |
| 40 | ssrab2 | ⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ℕ | |
| 41 | dvdsdivcl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) | |
| 42 | 6 23 41 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 43 | 40 42 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑘 ) ∈ ℕ ) |
| 44 | 43 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑁 / 𝑘 ) ∈ ℤ ) |
| 45 | dvdscmulr | ⊢ ( ( 𝑗 ∈ ℤ ∧ ( 𝑁 / 𝑘 ) ∈ ℤ ∧ ( 𝑘 ∈ ℤ ∧ 𝑘 ≠ 0 ) ) → ( ( 𝑘 · 𝑗 ) ∥ ( 𝑘 · ( 𝑁 / 𝑘 ) ) ↔ 𝑗 ∥ ( 𝑁 / 𝑘 ) ) ) | |
| 46 | 27 44 5 36 45 | syl112anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( ( 𝑘 · 𝑗 ) ∥ ( 𝑘 · ( 𝑁 / 𝑘 ) ) ↔ 𝑗 ∥ ( 𝑁 / 𝑘 ) ) ) |
| 47 | 39 46 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ∥ ( 𝑁 / 𝑘 ) ) |
| 48 | 24 26 47 | elrabd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) |
| 49 | 23 48 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ) |
| 50 | 49 | ex | ⊢ ( 𝜑 → ( ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) → ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ) ) |