This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of an integer is greater than or equal to zero. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcge0 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → 0 ≤ ( 𝑃 pCnt 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lepnf | ⊢ 0 ≤ +∞ | |
| 2 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) = ( 𝑃 pCnt 0 ) ) | |
| 3 | pc0 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 pCnt 0 ) = +∞ ) |
| 5 | 2 4 | sylan9eqr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝑃 pCnt 𝑁 ) = +∞ ) |
| 6 | 1 5 | breqtrrid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → 0 ≤ ( 𝑃 pCnt 𝑁 ) ) |
| 7 | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) | |
| 8 | 7 | nn0ge0d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 0 ≤ ( 𝑃 pCnt 𝑁 ) ) |
| 9 | 8 | anassrs | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → 0 ≤ ( 𝑃 pCnt 𝑁 ) ) |
| 10 | 6 9 | pm2.61dane | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → 0 ≤ ( 𝑃 pCnt 𝑁 ) ) |