This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Axiom of Pairing using class variables. Theorem 7.13 of Quine p. 51. By virtue of its definition, an unordered pair remains a set (even though no longer a pair) even when its components are proper classes (see prprc ), so we can dispense with hypotheses requiring them to be sets. (Contributed by NM, 15-Jul-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prex | ⊢ { 𝐴 , 𝐵 } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 | ⊢ ( 𝑦 = 𝐵 → { 𝑥 , 𝑦 } = { 𝑥 , 𝐵 } ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( { 𝑥 , 𝑦 } ∈ V ↔ { 𝑥 , 𝐵 } ∈ V ) ) |
| 3 | zfpair2 | ⊢ { 𝑥 , 𝑦 } ∈ V | |
| 4 | 2 3 | vtoclg | ⊢ ( 𝐵 ∈ V → { 𝑥 , 𝐵 } ∈ V ) |
| 5 | preq1 | ⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝐵 } = { 𝐴 , 𝐵 } ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( { 𝑥 , 𝐵 } ∈ V ↔ { 𝐴 , 𝐵 } ∈ V ) ) |
| 7 | 4 6 | imbitrid | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ V → { 𝐴 , 𝐵 } ∈ V ) ) |
| 8 | 7 | vtocleg | ⊢ ( 𝐴 ∈ V → ( 𝐵 ∈ V → { 𝐴 , 𝐵 } ∈ V ) ) |
| 9 | prprc1 | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } = { 𝐵 } ) | |
| 10 | snex | ⊢ { 𝐵 } ∈ V | |
| 11 | 9 10 | eqeltrdi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } ∈ V ) |
| 12 | prprc2 | ⊢ ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } = { 𝐴 } ) | |
| 13 | snex | ⊢ { 𝐴 } ∈ V | |
| 14 | 12 13 | eqeltrdi | ⊢ ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } ∈ V ) |
| 15 | 8 11 14 | pm2.61nii | ⊢ { 𝐴 , 𝐵 } ∈ V |