This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a bijection from the squarefree divisors of a number N to the powerset of the prime divisors of N . Among other things, this implies that a number has 2 ^ k squarefree divisors where k is the number of prime divisors, and a squarefree number has 2 ^ k divisors (because all divisors of a squarefree number are squarefree). The inverse function to F takes the product of all the primes in some subset of prime divisors of N . (Contributed by Mario Carneiro, 1-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqff1o.1 | |- S = { x e. NN | ( ( mmu ` x ) =/= 0 /\ x || N ) } |
|
| sqff1o.2 | |- F = ( n e. S |-> { p e. Prime | p || n } ) |
||
| sqff1o.3 | |- G = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
||
| Assertion | sqff1o | |- ( N e. NN -> F : S -1-1-onto-> ~P { p e. Prime | p || N } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqff1o.1 | |- S = { x e. NN | ( ( mmu ` x ) =/= 0 /\ x || N ) } |
|
| 2 | sqff1o.2 | |- F = ( n e. S |-> { p e. Prime | p || n } ) |
|
| 3 | sqff1o.3 | |- G = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
| 4 | fveq2 | |- ( x = n -> ( mmu ` x ) = ( mmu ` n ) ) |
|
| 5 | 4 | neeq1d | |- ( x = n -> ( ( mmu ` x ) =/= 0 <-> ( mmu ` n ) =/= 0 ) ) |
| 6 | breq1 | |- ( x = n -> ( x || N <-> n || N ) ) |
|
| 7 | 5 6 | anbi12d | |- ( x = n -> ( ( ( mmu ` x ) =/= 0 /\ x || N ) <-> ( ( mmu ` n ) =/= 0 /\ n || N ) ) ) |
| 8 | 7 1 | elrab2 | |- ( n e. S <-> ( n e. NN /\ ( ( mmu ` n ) =/= 0 /\ n || N ) ) ) |
| 9 | 8 | simprbi | |- ( n e. S -> ( ( mmu ` n ) =/= 0 /\ n || N ) ) |
| 10 | 9 | simprd | |- ( n e. S -> n || N ) |
| 11 | 10 | ad2antlr | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> n || N ) |
| 12 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 13 | 12 | adantl | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> p e. ZZ ) |
| 14 | simplr | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> n e. S ) |
|
| 15 | 14 8 | sylib | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( n e. NN /\ ( ( mmu ` n ) =/= 0 /\ n || N ) ) ) |
| 16 | 15 | simpld | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> n e. NN ) |
| 17 | 16 | nnzd | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> n e. ZZ ) |
| 18 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 19 | 18 | ad2antrr | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> N e. ZZ ) |
| 20 | dvdstr | |- ( ( p e. ZZ /\ n e. ZZ /\ N e. ZZ ) -> ( ( p || n /\ n || N ) -> p || N ) ) |
|
| 21 | 13 17 19 20 | syl3anc | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( ( p || n /\ n || N ) -> p || N ) ) |
| 22 | 11 21 | mpan2d | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( p || n -> p || N ) ) |
| 23 | 22 | ss2rabdv | |- ( ( N e. NN /\ n e. S ) -> { p e. Prime | p || n } C_ { p e. Prime | p || N } ) |
| 24 | prmex | |- Prime e. _V |
|
| 25 | 24 | rabex | |- { p e. Prime | p || n } e. _V |
| 26 | 25 | elpw | |- ( { p e. Prime | p || n } e. ~P { p e. Prime | p || N } <-> { p e. Prime | p || n } C_ { p e. Prime | p || N } ) |
| 27 | 23 26 | sylibr | |- ( ( N e. NN /\ n e. S ) -> { p e. Prime | p || n } e. ~P { p e. Prime | p || N } ) |
| 28 | cnveq | |- ( y = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) -> `' y = `' ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) |
|
| 29 | 28 | imaeq1d | |- ( y = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) -> ( `' y " NN ) = ( `' ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) " NN ) ) |
| 30 | 29 | eleq1d | |- ( y = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) -> ( ( `' y " NN ) e. Fin <-> ( `' ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) " NN ) e. Fin ) ) |
| 31 | 1nn0 | |- 1 e. NN0 |
|
| 32 | 0nn0 | |- 0 e. NN0 |
|
| 33 | 31 32 | ifcli | |- if ( k e. z , 1 , 0 ) e. NN0 |
| 34 | 33 | rgenw | |- A. k e. Prime if ( k e. z , 1 , 0 ) e. NN0 |
| 35 | eqid | |- ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) |
|
| 36 | 35 | fmpt | |- ( A. k e. Prime if ( k e. z , 1 , 0 ) e. NN0 <-> ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) : Prime --> NN0 ) |
| 37 | 34 36 | mpbi | |- ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) : Prime --> NN0 |
| 38 | 37 | a1i | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) : Prime --> NN0 ) |
| 39 | nn0ex | |- NN0 e. _V |
|
| 40 | 39 24 | elmap | |- ( ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) e. ( NN0 ^m Prime ) <-> ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) : Prime --> NN0 ) |
| 41 | 38 40 | sylibr | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) e. ( NN0 ^m Prime ) ) |
| 42 | fzfi | |- ( 1 ... N ) e. Fin |
|
| 43 | ffn | |- ( ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) : Prime --> NN0 -> ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) Fn Prime ) |
|
| 44 | elpreima | |- ( ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) Fn Prime -> ( x e. ( `' ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) " NN ) <-> ( x e. Prime /\ ( ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ` x ) e. NN ) ) ) |
|
| 45 | 37 43 44 | mp2b | |- ( x e. ( `' ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) " NN ) <-> ( x e. Prime /\ ( ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ` x ) e. NN ) ) |
| 46 | elequ1 | |- ( k = x -> ( k e. z <-> x e. z ) ) |
|
| 47 | 46 | ifbid | |- ( k = x -> if ( k e. z , 1 , 0 ) = if ( x e. z , 1 , 0 ) ) |
| 48 | 31 32 | ifcli | |- if ( x e. z , 1 , 0 ) e. NN0 |
| 49 | 48 | elexi | |- if ( x e. z , 1 , 0 ) e. _V |
| 50 | 47 35 49 | fvmpt | |- ( x e. Prime -> ( ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ` x ) = if ( x e. z , 1 , 0 ) ) |
| 51 | 50 | eleq1d | |- ( x e. Prime -> ( ( ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ` x ) e. NN <-> if ( x e. z , 1 , 0 ) e. NN ) ) |
| 52 | 51 | biimpa | |- ( ( x e. Prime /\ ( ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ` x ) e. NN ) -> if ( x e. z , 1 , 0 ) e. NN ) |
| 53 | 45 52 | sylbi | |- ( x e. ( `' ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) " NN ) -> if ( x e. z , 1 , 0 ) e. NN ) |
| 54 | 0nnn | |- -. 0 e. NN |
|
| 55 | iffalse | |- ( -. x e. z -> if ( x e. z , 1 , 0 ) = 0 ) |
|
| 56 | 55 | eleq1d | |- ( -. x e. z -> ( if ( x e. z , 1 , 0 ) e. NN <-> 0 e. NN ) ) |
| 57 | 54 56 | mtbiri | |- ( -. x e. z -> -. if ( x e. z , 1 , 0 ) e. NN ) |
| 58 | 57 | con4i | |- ( if ( x e. z , 1 , 0 ) e. NN -> x e. z ) |
| 59 | 53 58 | syl | |- ( x e. ( `' ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) " NN ) -> x e. z ) |
| 60 | 59 | ssriv | |- ( `' ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) " NN ) C_ z |
| 61 | elpwi | |- ( z e. ~P { p e. Prime | p || N } -> z C_ { p e. Prime | p || N } ) |
|
| 62 | 61 | adantl | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> z C_ { p e. Prime | p || N } ) |
| 63 | prmssnn | |- Prime C_ NN |
|
| 64 | rabss2 | |- ( Prime C_ NN -> { p e. Prime | p || N } C_ { p e. NN | p || N } ) |
|
| 65 | 63 64 | ax-mp | |- { p e. Prime | p || N } C_ { p e. NN | p || N } |
| 66 | dvdsssfz1 | |- ( N e. NN -> { p e. NN | p || N } C_ ( 1 ... N ) ) |
|
| 67 | 66 | adantr | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> { p e. NN | p || N } C_ ( 1 ... N ) ) |
| 68 | 65 67 | sstrid | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> { p e. Prime | p || N } C_ ( 1 ... N ) ) |
| 69 | 62 68 | sstrd | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> z C_ ( 1 ... N ) ) |
| 70 | 60 69 | sstrid | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( `' ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) " NN ) C_ ( 1 ... N ) ) |
| 71 | ssfi | |- ( ( ( 1 ... N ) e. Fin /\ ( `' ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) " NN ) C_ ( 1 ... N ) ) -> ( `' ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) " NN ) e. Fin ) |
|
| 72 | 42 70 71 | sylancr | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( `' ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) " NN ) e. Fin ) |
| 73 | 30 41 72 | elrabd | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) e. { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } ) |
| 74 | eqid | |- { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } = { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } |
|
| 75 | 3 74 | 1arith | |- G : NN -1-1-onto-> { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } |
| 76 | f1ocnv | |- ( G : NN -1-1-onto-> { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } -> `' G : { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } -1-1-onto-> NN ) |
|
| 77 | f1of | |- ( `' G : { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } -1-1-onto-> NN -> `' G : { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } --> NN ) |
|
| 78 | 75 76 77 | mp2b | |- `' G : { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } --> NN |
| 79 | 78 | ffvelcdmi | |- ( ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) e. { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } -> ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) e. NN ) |
| 80 | 73 79 | syl | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) e. NN ) |
| 81 | f1ocnvfv2 | |- ( ( G : NN -1-1-onto-> { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } /\ ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) e. { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } ) -> ( G ` ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) |
|
| 82 | 75 73 81 | sylancr | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( G ` ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) |
| 83 | 3 | 1arithlem1 | |- ( ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) e. NN -> ( G ` ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) = ( p e. Prime |-> ( p pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) ) |
| 84 | 80 83 | syl | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( G ` ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) = ( p e. Prime |-> ( p pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) ) |
| 85 | 82 84 | eqtr3d | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) = ( p e. Prime |-> ( p pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) ) |
| 86 | 85 | fveq1d | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ` q ) = ( ( p e. Prime |-> ( p pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) ` q ) ) |
| 87 | elequ1 | |- ( k = q -> ( k e. z <-> q e. z ) ) |
|
| 88 | 87 | ifbid | |- ( k = q -> if ( k e. z , 1 , 0 ) = if ( q e. z , 1 , 0 ) ) |
| 89 | 31 32 | ifcli | |- if ( q e. z , 1 , 0 ) e. NN0 |
| 90 | 89 | elexi | |- if ( q e. z , 1 , 0 ) e. _V |
| 91 | 88 35 90 | fvmpt | |- ( q e. Prime -> ( ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ` q ) = if ( q e. z , 1 , 0 ) ) |
| 92 | 86 91 | sylan9req | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. Prime ) -> ( ( p e. Prime |-> ( p pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) ` q ) = if ( q e. z , 1 , 0 ) ) |
| 93 | oveq1 | |- ( p = q -> ( p pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) = ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) |
|
| 94 | eqid | |- ( p e. Prime |-> ( p pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) = ( p e. Prime |-> ( p pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) |
|
| 95 | ovex | |- ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) e. _V |
|
| 96 | 93 94 95 | fvmpt | |- ( q e. Prime -> ( ( p e. Prime |-> ( p pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) ` q ) = ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) |
| 97 | 96 | adantl | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. Prime ) -> ( ( p e. Prime |-> ( p pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) ` q ) = ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) |
| 98 | 92 97 | eqtr3d | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. Prime ) -> if ( q e. z , 1 , 0 ) = ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) |
| 99 | breq1 | |- ( 1 = if ( q e. z , 1 , 0 ) -> ( 1 <_ 1 <-> if ( q e. z , 1 , 0 ) <_ 1 ) ) |
|
| 100 | breq1 | |- ( 0 = if ( q e. z , 1 , 0 ) -> ( 0 <_ 1 <-> if ( q e. z , 1 , 0 ) <_ 1 ) ) |
|
| 101 | 1le1 | |- 1 <_ 1 |
|
| 102 | 0le1 | |- 0 <_ 1 |
|
| 103 | 99 100 101 102 | keephyp | |- if ( q e. z , 1 , 0 ) <_ 1 |
| 104 | 98 103 | eqbrtrrdi | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. Prime ) -> ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) <_ 1 ) |
| 105 | 104 | ralrimiva | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> A. q e. Prime ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) <_ 1 ) |
| 106 | issqf | |- ( ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) e. NN -> ( ( mmu ` ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) =/= 0 <-> A. q e. Prime ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) <_ 1 ) ) |
|
| 107 | 80 106 | syl | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( ( mmu ` ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) =/= 0 <-> A. q e. Prime ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) <_ 1 ) ) |
| 108 | 105 107 | mpbird | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( mmu ` ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) =/= 0 ) |
| 109 | iftrue | |- ( q e. z -> if ( q e. z , 1 , 0 ) = 1 ) |
|
| 110 | 109 | adantl | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. z ) -> if ( q e. z , 1 , 0 ) = 1 ) |
| 111 | 62 | sselda | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. z ) -> q e. { p e. Prime | p || N } ) |
| 112 | breq1 | |- ( p = q -> ( p || N <-> q || N ) ) |
|
| 113 | 112 | elrab | |- ( q e. { p e. Prime | p || N } <-> ( q e. Prime /\ q || N ) ) |
| 114 | 111 113 | sylib | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. z ) -> ( q e. Prime /\ q || N ) ) |
| 115 | 114 | simprd | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. z ) -> q || N ) |
| 116 | 114 | simpld | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. z ) -> q e. Prime ) |
| 117 | simpll | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. z ) -> N e. NN ) |
|
| 118 | pcelnn | |- ( ( q e. Prime /\ N e. NN ) -> ( ( q pCnt N ) e. NN <-> q || N ) ) |
|
| 119 | 116 117 118 | syl2anc | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. z ) -> ( ( q pCnt N ) e. NN <-> q || N ) ) |
| 120 | 115 119 | mpbird | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. z ) -> ( q pCnt N ) e. NN ) |
| 121 | 120 | nnge1d | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. z ) -> 1 <_ ( q pCnt N ) ) |
| 122 | 110 121 | eqbrtrd | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. z ) -> if ( q e. z , 1 , 0 ) <_ ( q pCnt N ) ) |
| 123 | 122 | ex | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( q e. z -> if ( q e. z , 1 , 0 ) <_ ( q pCnt N ) ) ) |
| 124 | 123 | adantr | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. Prime ) -> ( q e. z -> if ( q e. z , 1 , 0 ) <_ ( q pCnt N ) ) ) |
| 125 | simpr | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. Prime ) -> q e. Prime ) |
|
| 126 | 18 | ad2antrr | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. Prime ) -> N e. ZZ ) |
| 127 | pcge0 | |- ( ( q e. Prime /\ N e. ZZ ) -> 0 <_ ( q pCnt N ) ) |
|
| 128 | 125 126 127 | syl2anc | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. Prime ) -> 0 <_ ( q pCnt N ) ) |
| 129 | iffalse | |- ( -. q e. z -> if ( q e. z , 1 , 0 ) = 0 ) |
|
| 130 | 129 | breq1d | |- ( -. q e. z -> ( if ( q e. z , 1 , 0 ) <_ ( q pCnt N ) <-> 0 <_ ( q pCnt N ) ) ) |
| 131 | 128 130 | syl5ibrcom | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. Prime ) -> ( -. q e. z -> if ( q e. z , 1 , 0 ) <_ ( q pCnt N ) ) ) |
| 132 | 124 131 | pm2.61d | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. Prime ) -> if ( q e. z , 1 , 0 ) <_ ( q pCnt N ) ) |
| 133 | 98 132 | eqbrtrrd | |- ( ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) /\ q e. Prime ) -> ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) <_ ( q pCnt N ) ) |
| 134 | 133 | ralrimiva | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> A. q e. Prime ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) <_ ( q pCnt N ) ) |
| 135 | 80 | nnzd | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) e. ZZ ) |
| 136 | 18 | adantr | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> N e. ZZ ) |
| 137 | pc2dvds | |- ( ( ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) e. ZZ /\ N e. ZZ ) -> ( ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) || N <-> A. q e. Prime ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) <_ ( q pCnt N ) ) ) |
|
| 138 | 135 136 137 | syl2anc | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) || N <-> A. q e. Prime ( q pCnt ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) <_ ( q pCnt N ) ) ) |
| 139 | 134 138 | mpbird | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) || N ) |
| 140 | 108 139 | jca | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( ( mmu ` ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) =/= 0 /\ ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) || N ) ) |
| 141 | fveq2 | |- ( x = ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) -> ( mmu ` x ) = ( mmu ` ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) |
|
| 142 | 141 | neeq1d | |- ( x = ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) -> ( ( mmu ` x ) =/= 0 <-> ( mmu ` ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) =/= 0 ) ) |
| 143 | breq1 | |- ( x = ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) -> ( x || N <-> ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) || N ) ) |
|
| 144 | 142 143 | anbi12d | |- ( x = ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) -> ( ( ( mmu ` x ) =/= 0 /\ x || N ) <-> ( ( mmu ` ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) =/= 0 /\ ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) || N ) ) ) |
| 145 | 144 1 | elrab2 | |- ( ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) e. S <-> ( ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) e. NN /\ ( ( mmu ` ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) =/= 0 /\ ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) || N ) ) ) |
| 146 | 80 140 145 | sylanbrc | |- ( ( N e. NN /\ z e. ~P { p e. Prime | p || N } ) -> ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) e. S ) |
| 147 | eqcom | |- ( n = ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) <-> ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) = n ) |
|
| 148 | 8 | simplbi | |- ( n e. S -> n e. NN ) |
| 149 | 148 | ad2antrl | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> n e. NN ) |
| 150 | 24 | mptex | |- ( p e. Prime |-> ( p pCnt n ) ) e. _V |
| 151 | 3 | fvmpt2 | |- ( ( n e. NN /\ ( p e. Prime |-> ( p pCnt n ) ) e. _V ) -> ( G ` n ) = ( p e. Prime |-> ( p pCnt n ) ) ) |
| 152 | 149 150 151 | sylancl | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( G ` n ) = ( p e. Prime |-> ( p pCnt n ) ) ) |
| 153 | 152 | eqeq1d | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( ( G ` n ) = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) <-> ( p e. Prime |-> ( p pCnt n ) ) = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) |
| 154 | 75 | a1i | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> G : NN -1-1-onto-> { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } ) |
| 155 | 73 | adantrl | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) e. { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } ) |
| 156 | f1ocnvfvb | |- ( ( G : NN -1-1-onto-> { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } /\ n e. NN /\ ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) e. { y e. ( NN0 ^m Prime ) | ( `' y " NN ) e. Fin } ) -> ( ( G ` n ) = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) <-> ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) = n ) ) |
|
| 157 | 154 149 155 156 | syl3anc | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( ( G ` n ) = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) <-> ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) = n ) ) |
| 158 | 24 | a1i | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> Prime e. _V ) |
| 159 | 0cnd | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> 0 e. CC ) |
|
| 160 | 1cnd | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> 1 e. CC ) |
|
| 161 | 0ne1 | |- 0 =/= 1 |
|
| 162 | 161 | a1i | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> 0 =/= 1 ) |
| 163 | 158 159 160 162 | pw2f1olem | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( ( z e. ~P Prime /\ ( p e. Prime |-> ( p pCnt n ) ) = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) <-> ( ( p e. Prime |-> ( p pCnt n ) ) e. ( { 0 , 1 } ^m Prime ) /\ z = ( `' ( p e. Prime |-> ( p pCnt n ) ) " { 1 } ) ) ) ) |
| 164 | ssrab2 | |- { p e. Prime | p || N } C_ Prime |
|
| 165 | 164 | sspwi | |- ~P { p e. Prime | p || N } C_ ~P Prime |
| 166 | simprr | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> z e. ~P { p e. Prime | p || N } ) |
|
| 167 | 165 166 | sselid | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> z e. ~P Prime ) |
| 168 | 167 | biantrurd | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( ( p e. Prime |-> ( p pCnt n ) ) = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) <-> ( z e. ~P Prime /\ ( p e. Prime |-> ( p pCnt n ) ) = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) ) ) |
| 169 | id | |- ( p e. Prime -> p e. Prime ) |
|
| 170 | 148 | adantl | |- ( ( N e. NN /\ n e. S ) -> n e. NN ) |
| 171 | pccl | |- ( ( p e. Prime /\ n e. NN ) -> ( p pCnt n ) e. NN0 ) |
|
| 172 | 169 170 171 | syl2anr | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( p pCnt n ) e. NN0 ) |
| 173 | elnn0 | |- ( ( p pCnt n ) e. NN0 <-> ( ( p pCnt n ) e. NN \/ ( p pCnt n ) = 0 ) ) |
|
| 174 | 172 173 | sylib | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( ( p pCnt n ) e. NN \/ ( p pCnt n ) = 0 ) ) |
| 175 | 174 | orcomd | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( ( p pCnt n ) = 0 \/ ( p pCnt n ) e. NN ) ) |
| 176 | 9 | simpld | |- ( n e. S -> ( mmu ` n ) =/= 0 ) |
| 177 | 176 | adantl | |- ( ( N e. NN /\ n e. S ) -> ( mmu ` n ) =/= 0 ) |
| 178 | issqf | |- ( n e. NN -> ( ( mmu ` n ) =/= 0 <-> A. p e. Prime ( p pCnt n ) <_ 1 ) ) |
|
| 179 | 170 178 | syl | |- ( ( N e. NN /\ n e. S ) -> ( ( mmu ` n ) =/= 0 <-> A. p e. Prime ( p pCnt n ) <_ 1 ) ) |
| 180 | 177 179 | mpbid | |- ( ( N e. NN /\ n e. S ) -> A. p e. Prime ( p pCnt n ) <_ 1 ) |
| 181 | 180 | r19.21bi | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( p pCnt n ) <_ 1 ) |
| 182 | nnle1eq1 | |- ( ( p pCnt n ) e. NN -> ( ( p pCnt n ) <_ 1 <-> ( p pCnt n ) = 1 ) ) |
|
| 183 | 181 182 | syl5ibcom | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( ( p pCnt n ) e. NN -> ( p pCnt n ) = 1 ) ) |
| 184 | 183 | orim2d | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( ( ( p pCnt n ) = 0 \/ ( p pCnt n ) e. NN ) -> ( ( p pCnt n ) = 0 \/ ( p pCnt n ) = 1 ) ) ) |
| 185 | 175 184 | mpd | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( ( p pCnt n ) = 0 \/ ( p pCnt n ) = 1 ) ) |
| 186 | ovex | |- ( p pCnt n ) e. _V |
|
| 187 | 186 | elpr | |- ( ( p pCnt n ) e. { 0 , 1 } <-> ( ( p pCnt n ) = 0 \/ ( p pCnt n ) = 1 ) ) |
| 188 | 185 187 | sylibr | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( p pCnt n ) e. { 0 , 1 } ) |
| 189 | 188 | fmpttd | |- ( ( N e. NN /\ n e. S ) -> ( p e. Prime |-> ( p pCnt n ) ) : Prime --> { 0 , 1 } ) |
| 190 | 189 | adantrr | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( p e. Prime |-> ( p pCnt n ) ) : Prime --> { 0 , 1 } ) |
| 191 | prex | |- { 0 , 1 } e. _V |
|
| 192 | 191 24 | elmap | |- ( ( p e. Prime |-> ( p pCnt n ) ) e. ( { 0 , 1 } ^m Prime ) <-> ( p e. Prime |-> ( p pCnt n ) ) : Prime --> { 0 , 1 } ) |
| 193 | 190 192 | sylibr | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( p e. Prime |-> ( p pCnt n ) ) e. ( { 0 , 1 } ^m Prime ) ) |
| 194 | 193 | biantrurd | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( z = ( `' ( p e. Prime |-> ( p pCnt n ) ) " { 1 } ) <-> ( ( p e. Prime |-> ( p pCnt n ) ) e. ( { 0 , 1 } ^m Prime ) /\ z = ( `' ( p e. Prime |-> ( p pCnt n ) ) " { 1 } ) ) ) ) |
| 195 | 163 168 194 | 3bitr4d | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( ( p e. Prime |-> ( p pCnt n ) ) = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) <-> z = ( `' ( p e. Prime |-> ( p pCnt n ) ) " { 1 } ) ) ) |
| 196 | eqid | |- ( p e. Prime |-> ( p pCnt n ) ) = ( p e. Prime |-> ( p pCnt n ) ) |
|
| 197 | 196 | mptiniseg | |- ( 1 e. NN0 -> ( `' ( p e. Prime |-> ( p pCnt n ) ) " { 1 } ) = { p e. Prime | ( p pCnt n ) = 1 } ) |
| 198 | 31 197 | ax-mp | |- ( `' ( p e. Prime |-> ( p pCnt n ) ) " { 1 } ) = { p e. Prime | ( p pCnt n ) = 1 } |
| 199 | id | |- ( ( p pCnt n ) = 1 -> ( p pCnt n ) = 1 ) |
|
| 200 | 1nn | |- 1 e. NN |
|
| 201 | 199 200 | eqeltrdi | |- ( ( p pCnt n ) = 1 -> ( p pCnt n ) e. NN ) |
| 202 | 201 183 | impbid2 | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( ( p pCnt n ) = 1 <-> ( p pCnt n ) e. NN ) ) |
| 203 | simpr | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> p e. Prime ) |
|
| 204 | pcelnn | |- ( ( p e. Prime /\ n e. NN ) -> ( ( p pCnt n ) e. NN <-> p || n ) ) |
|
| 205 | 203 16 204 | syl2anc | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( ( p pCnt n ) e. NN <-> p || n ) ) |
| 206 | 202 205 | bitrd | |- ( ( ( N e. NN /\ n e. S ) /\ p e. Prime ) -> ( ( p pCnt n ) = 1 <-> p || n ) ) |
| 207 | 206 | rabbidva | |- ( ( N e. NN /\ n e. S ) -> { p e. Prime | ( p pCnt n ) = 1 } = { p e. Prime | p || n } ) |
| 208 | 207 | adantrr | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> { p e. Prime | ( p pCnt n ) = 1 } = { p e. Prime | p || n } ) |
| 209 | 198 208 | eqtrid | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( `' ( p e. Prime |-> ( p pCnt n ) ) " { 1 } ) = { p e. Prime | p || n } ) |
| 210 | 209 | eqeq2d | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( z = ( `' ( p e. Prime |-> ( p pCnt n ) ) " { 1 } ) <-> z = { p e. Prime | p || n } ) ) |
| 211 | 195 210 | bitrd | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( ( p e. Prime |-> ( p pCnt n ) ) = ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) <-> z = { p e. Prime | p || n } ) ) |
| 212 | 153 157 211 | 3bitr3d | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) = n <-> z = { p e. Prime | p || n } ) ) |
| 213 | 147 212 | bitrid | |- ( ( N e. NN /\ ( n e. S /\ z e. ~P { p e. Prime | p || N } ) ) -> ( n = ( `' G ` ( k e. Prime |-> if ( k e. z , 1 , 0 ) ) ) <-> z = { p e. Prime | p || n } ) ) |
| 214 | 2 27 146 213 | f1o2d | |- ( N e. NN -> F : S -1-1-onto-> ~P { p e. Prime | p || N } ) |