This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007) (Proof shortened by Wolf Lammen, 27-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | impbid2.1 | ⊢ ( 𝜓 → 𝜒 ) | |
| impbid2.2 | ⊢ ( 𝜑 → ( 𝜒 → 𝜓 ) ) | ||
| Assertion | impbid2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid2.1 | ⊢ ( 𝜓 → 𝜒 ) | |
| 2 | impbid2.2 | ⊢ ( 𝜑 → ( 𝜒 → 𝜓 ) ) | |
| 3 | 2 1 | impbid1 | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜓 ) ) |
| 4 | 3 | bicomd | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |