This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of the Möbius function over the divisors of N gives one if N = 1 , but otherwise always sums to zero. Theorem 2.1 in ApostolNT p. 25. This makes the Möbius function useful for inverting divisor sums; see also muinv . (Contributed by Mario Carneiro, 2-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | musum | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ( μ ‘ 𝑘 ) = if ( 𝑁 = 1 , 1 , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( μ ‘ 𝑛 ) = ( μ ‘ 𝑘 ) ) | |
| 2 | 1 | neeq1d | ⊢ ( 𝑛 = 𝑘 → ( ( μ ‘ 𝑛 ) ≠ 0 ↔ ( μ ‘ 𝑘 ) ≠ 0 ) ) |
| 3 | breq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∥ 𝑁 ↔ 𝑘 ∥ 𝑁 ) ) | |
| 4 | 2 3 | anbi12d | ⊢ ( 𝑛 = 𝑘 → ( ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ↔ ( ( μ ‘ 𝑘 ) ≠ 0 ∧ 𝑘 ∥ 𝑁 ) ) ) |
| 5 | 4 | elrab | ⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ↔ ( 𝑘 ∈ ℕ ∧ ( ( μ ‘ 𝑘 ) ≠ 0 ∧ 𝑘 ∥ 𝑁 ) ) ) |
| 6 | muval2 | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( μ ‘ 𝑘 ) ≠ 0 ) → ( μ ‘ 𝑘 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) | |
| 7 | 6 | adantrr | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( μ ‘ 𝑘 ) ≠ 0 ∧ 𝑘 ∥ 𝑁 ) ) → ( μ ‘ 𝑘 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 8 | 5 7 | sylbi | ⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } → ( μ ‘ 𝑘 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → ( μ ‘ 𝑘 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 10 | 9 | sumeq2dv | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ( μ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 11 | simpr | ⊢ ( ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) → 𝑛 ∥ 𝑁 ) | |
| 12 | 11 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) → 𝑛 ∥ 𝑁 ) ) |
| 13 | 12 | ss2rabdv | ⊢ ( 𝑁 ∈ ℕ → { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |
| 14 | ssrab2 | ⊢ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ⊆ ℕ | |
| 15 | simpr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) | |
| 16 | 14 15 | sselid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → 𝑘 ∈ ℕ ) |
| 17 | mucl | ⊢ ( 𝑘 ∈ ℕ → ( μ ‘ 𝑘 ) ∈ ℤ ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → ( μ ‘ 𝑘 ) ∈ ℤ ) |
| 19 | 18 | zcnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → ( μ ‘ 𝑘 ) ∈ ℂ ) |
| 20 | difrab | ⊢ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) = { 𝑛 ∈ ℕ ∣ ( 𝑛 ∥ 𝑁 ∧ ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) } | |
| 21 | pm3.21 | ⊢ ( 𝑛 ∥ 𝑁 → ( ( μ ‘ 𝑛 ) ≠ 0 → ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) ) | |
| 22 | 21 | necon1bd | ⊢ ( 𝑛 ∥ 𝑁 → ( ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) → ( μ ‘ 𝑛 ) = 0 ) ) |
| 23 | 22 | imp | ⊢ ( ( 𝑛 ∥ 𝑁 ∧ ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) → ( μ ‘ 𝑛 ) = 0 ) |
| 24 | 23 | a1i | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∥ 𝑁 ∧ ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) → ( μ ‘ 𝑛 ) = 0 ) ) |
| 25 | 24 | ss2rabi | ⊢ { 𝑛 ∈ ℕ ∣ ( 𝑛 ∥ 𝑁 ∧ ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) } ⊆ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } |
| 26 | 20 25 | eqsstri | ⊢ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) ⊆ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } |
| 27 | 26 | sseli | ⊢ ( 𝑘 ∈ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } ) |
| 28 | fveqeq2 | ⊢ ( 𝑛 = 𝑘 → ( ( μ ‘ 𝑛 ) = 0 ↔ ( μ ‘ 𝑘 ) = 0 ) ) | |
| 29 | 28 | elrab | ⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } ↔ ( 𝑘 ∈ ℕ ∧ ( μ ‘ 𝑘 ) = 0 ) ) |
| 30 | 29 | simprbi | ⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } → ( μ ‘ 𝑘 ) = 0 ) |
| 31 | 27 30 | syl | ⊢ ( 𝑘 ∈ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → ( μ ‘ 𝑘 ) = 0 ) |
| 32 | 31 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) ) → ( μ ‘ 𝑘 ) = 0 ) |
| 33 | dvdsfi | ⊢ ( 𝑁 ∈ ℕ → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ∈ Fin ) | |
| 34 | 13 19 32 33 | fsumss | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ( μ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ( μ ‘ 𝑘 ) ) |
| 35 | fveq2 | ⊢ ( 𝑥 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) | |
| 36 | 35 | oveq2d | ⊢ ( 𝑥 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 37 | 33 13 | ssfid | ⊢ ( 𝑁 ∈ ℕ → { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ∈ Fin ) |
| 38 | eqid | ⊢ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } = { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } | |
| 39 | eqid | ⊢ ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚 } ) = ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚 } ) | |
| 40 | oveq1 | ⊢ ( 𝑞 = 𝑝 → ( 𝑞 pCnt 𝑥 ) = ( 𝑝 pCnt 𝑥 ) ) | |
| 41 | 40 | cbvmptv | ⊢ ( 𝑞 ∈ ℙ ↦ ( 𝑞 pCnt 𝑥 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑥 ) ) |
| 42 | oveq2 | ⊢ ( 𝑥 = 𝑚 → ( 𝑝 pCnt 𝑥 ) = ( 𝑝 pCnt 𝑚 ) ) | |
| 43 | 42 | mpteq2dv | ⊢ ( 𝑥 = 𝑚 → ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑥 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑚 ) ) ) |
| 44 | 41 43 | eqtrid | ⊢ ( 𝑥 = 𝑚 → ( 𝑞 ∈ ℙ ↦ ( 𝑞 pCnt 𝑥 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑚 ) ) ) |
| 45 | 44 | cbvmptv | ⊢ ( 𝑥 ∈ ℕ ↦ ( 𝑞 ∈ ℙ ↦ ( 𝑞 pCnt 𝑥 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑚 ) ) ) |
| 46 | 38 39 45 | sqff1o | ⊢ ( 𝑁 ∈ ℕ → ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚 } ) : { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } –1-1-onto→ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 47 | breq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝑝 ∥ 𝑚 ↔ 𝑝 ∥ 𝑘 ) ) | |
| 48 | 47 | rabbidv | ⊢ ( 𝑚 = 𝑘 → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚 } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) |
| 49 | prmex | ⊢ ℙ ∈ V | |
| 50 | 49 | rabex | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ∈ V |
| 51 | 48 39 50 | fvmpt | ⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } → ( ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚 } ) ‘ 𝑘 ) = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) |
| 52 | 51 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → ( ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚 } ) ‘ 𝑘 ) = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) |
| 53 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 54 | prmdvdsfi | ⊢ ( 𝑁 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) | |
| 55 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } → 𝑥 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) | |
| 56 | ssfi | ⊢ ( ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ∧ 𝑥 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑥 ∈ Fin ) | |
| 57 | 54 55 56 | syl2an | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑥 ∈ Fin ) |
| 58 | hashcl | ⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) | |
| 59 | 57 58 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 60 | expcl | ⊢ ( ( - 1 ∈ ℂ ∧ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ∈ ℂ ) | |
| 61 | 53 59 60 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ∈ ℂ ) |
| 62 | 36 37 46 52 61 | fsumf1o | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 63 | fzfid | ⊢ ( 𝑁 ∈ ℕ → ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∈ Fin ) | |
| 64 | 54 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) |
| 65 | pwfi | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ↔ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) | |
| 66 | 64 65 | sylib | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) |
| 67 | ssrab2 | ⊢ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ⊆ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } | |
| 68 | ssfi | ⊢ ( ( 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ∧ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ⊆ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ∈ Fin ) | |
| 69 | 66 67 68 | sylancl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ∈ Fin ) |
| 70 | simprr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) | |
| 71 | fveqeq2 | ⊢ ( 𝑠 = 𝑥 → ( ( ♯ ‘ 𝑠 ) = 𝑧 ↔ ( ♯ ‘ 𝑥 ) = 𝑧 ) ) | |
| 72 | 71 | elrab | ⊢ ( 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ↔ ( 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∧ ( ♯ ‘ 𝑥 ) = 𝑧 ) ) |
| 73 | 72 | simprbi | ⊢ ( 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } → ( ♯ ‘ 𝑥 ) = 𝑧 ) |
| 74 | 70 73 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → ( ♯ ‘ 𝑥 ) = 𝑧 ) |
| 75 | 74 | ralrimivva | ⊢ ( 𝑁 ∈ ℕ → ∀ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∀ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( ♯ ‘ 𝑥 ) = 𝑧 ) |
| 76 | invdisj | ⊢ ( ∀ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∀ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( ♯ ‘ 𝑥 ) = 𝑧 → Disj 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) | |
| 77 | 75 76 | syl | ⊢ ( 𝑁 ∈ ℕ → Disj 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) |
| 78 | 54 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) |
| 79 | 67 70 | sselid | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 80 | 79 55 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → 𝑥 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 81 | 78 80 | ssfid | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → 𝑥 ∈ Fin ) |
| 82 | 81 58 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 83 | 53 82 60 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ∈ ℂ ) |
| 84 | 63 69 77 83 | fsumiun | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑥 ∈ ∪ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) |
| 85 | iunrab | ⊢ ∪ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } = { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 } | |
| 86 | 54 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) |
| 87 | elpwi | ⊢ ( 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } → 𝑠 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) | |
| 88 | 87 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑠 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 89 | ssdomg | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin → ( 𝑠 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } → 𝑠 ≼ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) | |
| 90 | 86 88 89 | sylc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑠 ≼ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 91 | ssfi | ⊢ ( ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ∧ 𝑠 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑠 ∈ Fin ) | |
| 92 | 54 87 91 | syl2an | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑠 ∈ Fin ) |
| 93 | hashdom | ⊢ ( ( 𝑠 ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) → ( ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ↔ 𝑠 ≼ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) | |
| 94 | 92 86 93 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ↔ 𝑠 ≼ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) |
| 95 | 90 94 | mpbird | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) |
| 96 | hashcl | ⊢ ( 𝑠 ∈ Fin → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) | |
| 97 | 92 96 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
| 98 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 99 | 97 98 | eleqtrdi | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ 𝑠 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 100 | hashcl | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ0 ) | |
| 101 | 54 100 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ0 ) |
| 102 | 101 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ0 ) |
| 103 | 102 | nn0zd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℤ ) |
| 104 | elfz5 | ⊢ ( ( ( ♯ ‘ 𝑠 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℤ ) → ( ( ♯ ‘ 𝑠 ) ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ↔ ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) | |
| 105 | 99 103 104 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ( ♯ ‘ 𝑠 ) ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ↔ ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) |
| 106 | 95 105 | mpbird | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ 𝑠 ) ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) |
| 107 | eqidd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑠 ) ) | |
| 108 | eqeq2 | ⊢ ( 𝑧 = ( ♯ ‘ 𝑠 ) → ( ( ♯ ‘ 𝑠 ) = 𝑧 ↔ ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑠 ) ) ) | |
| 109 | 108 | rspcev | ⊢ ( ( ( ♯ ‘ 𝑠 ) ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑠 ) ) → ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 ) |
| 110 | 106 107 109 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 ) |
| 111 | 110 | ralrimiva | ⊢ ( 𝑁 ∈ ℕ → ∀ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 ) |
| 112 | rabid2 | ⊢ ( 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } = { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 } ↔ ∀ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 ) | |
| 113 | 111 112 | sylibr | ⊢ ( 𝑁 ∈ ℕ → 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } = { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 } ) |
| 114 | 85 113 | eqtr4id | ⊢ ( 𝑁 ∈ ℕ → ∪ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } = 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 115 | 114 | sumeq1d | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑥 ∈ ∪ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) |
| 116 | elfznn0 | ⊢ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 𝑧 ∈ ℕ0 ) | |
| 117 | 116 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → 𝑧 ∈ ℕ0 ) |
| 118 | expcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑧 ∈ ℕ0 ) → ( - 1 ↑ 𝑧 ) ∈ ℂ ) | |
| 119 | 53 117 118 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → ( - 1 ↑ 𝑧 ) ∈ ℂ ) |
| 120 | fsumconst | ⊢ ( ( { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ∈ Fin ∧ ( - 1 ↑ 𝑧 ) ∈ ℂ ) → Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ 𝑧 ) = ( ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) · ( - 1 ↑ 𝑧 ) ) ) | |
| 121 | 69 119 120 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ 𝑧 ) = ( ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) · ( - 1 ↑ 𝑧 ) ) ) |
| 122 | 73 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) → ( ♯ ‘ 𝑥 ) = 𝑧 ) |
| 123 | 122 | oveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = ( - 1 ↑ 𝑧 ) ) |
| 124 | 123 | sumeq2dv | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ 𝑧 ) ) |
| 125 | elfzelz | ⊢ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 𝑧 ∈ ℤ ) | |
| 126 | hashbc | ⊢ ( ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ∧ 𝑧 ∈ ℤ ) → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) | |
| 127 | 54 125 126 | syl2an | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) |
| 128 | 127 | oveq1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) = ( ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) · ( - 1 ↑ 𝑧 ) ) ) |
| 129 | 121 124 128 | 3eqtr4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) ) |
| 130 | 129 | sumeq2dv | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) ) |
| 131 | 1pneg1e0 | ⊢ ( 1 + - 1 ) = 0 | |
| 132 | 131 | oveq1i | ⊢ ( ( 1 + - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) |
| 133 | binom1p | ⊢ ( ( - 1 ∈ ℂ ∧ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ0 ) → ( ( 1 + - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) ) | |
| 134 | 53 101 133 | sylancr | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 + - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) ) |
| 135 | 132 134 | eqtr3id | ⊢ ( 𝑁 ∈ ℕ → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) ) |
| 136 | eqeq2 | ⊢ ( 1 = if ( 𝑁 = 1 , 1 , 0 ) → ( ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = 1 ↔ ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) ) | |
| 137 | eqeq2 | ⊢ ( 0 = if ( 𝑁 = 1 , 1 , 0 ) → ( ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = 0 ↔ ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) ) | |
| 138 | nprmdvds1 | ⊢ ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1 ) | |
| 139 | simpr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → 𝑁 = 1 ) | |
| 140 | 139 | breq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( 𝑝 ∥ 𝑁 ↔ 𝑝 ∥ 1 ) ) |
| 141 | 140 | notbid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( ¬ 𝑝 ∥ 𝑁 ↔ ¬ 𝑝 ∥ 1 ) ) |
| 142 | 138 141 | imbitrrid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 𝑁 ) ) |
| 143 | 142 | ralrimiv | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ∀ 𝑝 ∈ ℙ ¬ 𝑝 ∥ 𝑁 ) |
| 144 | rabeq0 | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } = ∅ ↔ ∀ 𝑝 ∈ ℙ ¬ 𝑝 ∥ 𝑁 ) | |
| 145 | 143 144 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } = ∅ ) |
| 146 | 145 | fveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) = ( ♯ ‘ ∅ ) ) |
| 147 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 148 | 146 147 | eqtrdi | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) = 0 ) |
| 149 | 148 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = ( 0 ↑ 0 ) ) |
| 150 | 0exp0e1 | ⊢ ( 0 ↑ 0 ) = 1 | |
| 151 | 149 150 | eqtrdi | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = 1 ) |
| 152 | df-ne | ⊢ ( 𝑁 ≠ 1 ↔ ¬ 𝑁 = 1 ) | |
| 153 | eluz2b3 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) | |
| 154 | 153 | biimpri | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 155 | 152 154 | sylan2br | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 156 | exprmfct | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) | |
| 157 | 155 156 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) |
| 158 | rabn0 | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ≠ ∅ ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) | |
| 159 | 157 158 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ≠ ∅ ) |
| 160 | 54 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) |
| 161 | hashnncl | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ≠ ∅ ) ) | |
| 162 | 160 161 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ≠ ∅ ) ) |
| 163 | 159 162 | mpbird | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ ) |
| 164 | 163 | 0expd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = 0 ) |
| 165 | 136 137 151 164 | ifbothda | ⊢ ( 𝑁 ∈ ℕ → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) |
| 166 | 130 135 165 | 3eqtr2d | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) |
| 167 | 84 115 166 | 3eqtr3d | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) |
| 168 | 62 167 | eqtr3d | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) |
| 169 | 10 34 168 | 3eqtr3d | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ( μ ‘ 𝑘 ) = if ( 𝑁 = 1 , 1 , 0 ) ) |