This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015) (Revised by Mario Carneiro, 10-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumiun.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumiun.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | ||
| fsumiun.3 | ⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) | ||
| fsumiun.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | ||
| Assertion | fsumiun | ⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumiun.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumiun.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 3 | fsumiun.3 | ⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) | |
| 4 | fsumiun.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | |
| 5 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 6 | sseq1 | ⊢ ( 𝑢 = ∅ → ( 𝑢 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) | |
| 7 | iuneq1 | ⊢ ( 𝑢 = ∅ → ∪ 𝑥 ∈ 𝑢 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵 ) | |
| 8 | 0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ | |
| 9 | 7 8 | eqtrdi | ⊢ ( 𝑢 = ∅ → ∪ 𝑥 ∈ 𝑢 𝐵 = ∅ ) |
| 10 | 9 | sumeq1d | ⊢ ( 𝑢 = ∅ → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑘 ∈ ∅ 𝐶 ) |
| 11 | sumeq1 | ⊢ ( 𝑢 = ∅ → Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 ) | |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝑢 = ∅ → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ↔ Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 13 | 6 12 | imbi12d | ⊢ ( 𝑢 = ∅ → ( ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ↔ ( ∅ ⊆ 𝐴 → Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑢 = ∅ → ( ( 𝜑 → ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐴 → Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 15 | sseq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴 ) ) | |
| 16 | iuneq1 | ⊢ ( 𝑢 = 𝑧 → ∪ 𝑥 ∈ 𝑢 𝐵 = ∪ 𝑥 ∈ 𝑧 𝐵 ) | |
| 17 | 16 | sumeq1d | ⊢ ( 𝑢 = 𝑧 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 ) |
| 18 | sumeq1 | ⊢ ( 𝑢 = 𝑧 → Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) | |
| 19 | 17 18 | eqeq12d | ⊢ ( 𝑢 = 𝑧 → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ↔ Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 20 | 15 19 | imbi12d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ↔ ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝜑 → ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ↔ ( 𝜑 → ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 22 | sseq1 | ⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ( 𝑢 ⊆ 𝐴 ↔ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ) | |
| 23 | iuneq1 | ⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ∪ 𝑥 ∈ 𝑢 𝐵 = ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) | |
| 24 | 23 | sumeq1d | ⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 ) |
| 25 | sumeq1 | ⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) | |
| 26 | 24 25 | eqeq12d | ⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ↔ Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 27 | 22 26 | imbi12d | ⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ( ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ↔ ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 28 | 27 | imbi2d | ⊢ ( 𝑢 = ( 𝑧 ∪ { 𝑤 } ) → ( ( 𝜑 → ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ↔ ( 𝜑 → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 29 | sseq1 | ⊢ ( 𝑢 = 𝐴 → ( 𝑢 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 30 | iuneq1 | ⊢ ( 𝑢 = 𝐴 → ∪ 𝑥 ∈ 𝑢 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 31 | 30 | sumeq1d | ⊢ ( 𝑢 = 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 ) |
| 32 | sumeq1 | ⊢ ( 𝑢 = 𝐴 → Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) | |
| 33 | 31 32 | eqeq12d | ⊢ ( 𝑢 = 𝐴 → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ↔ Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 34 | 29 33 | imbi12d | ⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ↔ ( 𝐴 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 35 | 34 | imbi2d | ⊢ ( 𝑢 = 𝐴 → ( ( 𝜑 → ( 𝑢 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑢 𝐵 𝐶 = Σ 𝑥 ∈ 𝑢 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 36 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐶 = 0 | |
| 37 | sum0 | ⊢ Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = 0 | |
| 38 | 36 37 | eqtr4i | ⊢ Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 |
| 39 | 38 | 2a1i | ⊢ ( 𝜑 → ( ∅ ⊆ 𝐴 → Σ 𝑘 ∈ ∅ 𝐶 = Σ 𝑥 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 40 | id | ⊢ ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) | |
| 41 | 40 | unssad | ⊢ ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → 𝑧 ⊆ 𝐴 ) |
| 42 | 41 | imim1i | ⊢ ( ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 43 | oveq1 | ⊢ ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) = ( Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) ) | |
| 44 | nfcv | ⊢ Ⅎ 𝑧 𝐵 | |
| 45 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 | |
| 46 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 47 | 44 45 46 | cbviun | ⊢ ∪ 𝑥 ∈ { 𝑤 } 𝐵 = ∪ 𝑧 ∈ { 𝑤 } ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 48 | vex | ⊢ 𝑤 ∈ V | |
| 49 | csbeq1 | ⊢ ( 𝑧 = 𝑤 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) | |
| 50 | 48 49 | iunxsn | ⊢ ∪ 𝑧 ∈ { 𝑤 } ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
| 51 | 47 50 | eqtri | ⊢ ∪ 𝑥 ∈ { 𝑤 } 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
| 52 | 51 | ineq2i | ⊢ ( ∪ 𝑥 ∈ 𝑧 𝐵 ∩ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) = ( ∪ 𝑥 ∈ 𝑧 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 53 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Disj 𝑥 ∈ 𝐴 𝐵 ) |
| 54 | 41 | adantl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → 𝑧 ⊆ 𝐴 ) |
| 55 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) | |
| 56 | 55 | unssbd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → { 𝑤 } ⊆ 𝐴 ) |
| 57 | simplr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ¬ 𝑤 ∈ 𝑧 ) | |
| 58 | disjsn | ⊢ ( ( 𝑧 ∩ { 𝑤 } ) = ∅ ↔ ¬ 𝑤 ∈ 𝑧 ) | |
| 59 | 57 58 | sylibr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑧 ∩ { 𝑤 } ) = ∅ ) |
| 60 | disjiun | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑧 ⊆ 𝐴 ∧ { 𝑤 } ⊆ 𝐴 ∧ ( 𝑧 ∩ { 𝑤 } ) = ∅ ) ) → ( ∪ 𝑥 ∈ 𝑧 𝐵 ∩ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) = ∅ ) | |
| 61 | 53 54 56 59 60 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( ∪ 𝑥 ∈ 𝑧 𝐵 ∩ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) = ∅ ) |
| 62 | 52 61 | eqtr3id | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( ∪ 𝑥 ∈ 𝑧 𝐵 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
| 63 | iunxun | ⊢ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) | |
| 64 | 51 | uneq2i | ⊢ ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ∪ 𝑥 ∈ { 𝑤 } 𝐵 ) = ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 65 | 63 64 | eqtri | ⊢ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 66 | 65 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝑧 𝐵 ∪ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) |
| 67 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
| 68 | 67 55 | ssfid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑧 ∪ { 𝑤 } ) ∈ Fin ) |
| 69 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
| 70 | 69 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
| 71 | ssralv | ⊢ ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin → ∀ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin ) ) | |
| 72 | 55 70 71 | sylc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∀ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin ) |
| 73 | iunfi | ⊢ ( ( ( 𝑧 ∪ { 𝑤 } ) ∈ Fin ∧ ∀ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin ) → ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin ) | |
| 74 | 68 72 73 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ∈ Fin ) |
| 75 | iunss1 | ⊢ ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 76 | 75 | adantl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 77 | 76 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) → 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 78 | eliun | ⊢ ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 ) | |
| 79 | 4 | rexlimdvaa | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 → 𝐶 ∈ ℂ ) ) |
| 80 | 79 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 𝑘 ∈ 𝐵 → 𝐶 ∈ ℂ ) ) |
| 81 | 78 80 | biimtrid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝐶 ∈ ℂ ) ) |
| 82 | 81 | imp | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝐶 ∈ ℂ ) |
| 83 | 77 82 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) → 𝐶 ∈ ℂ ) |
| 84 | 62 66 74 83 | fsumsplit | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) ) |
| 85 | eqidd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( 𝑧 ∪ { 𝑤 } ) = ( 𝑧 ∪ { 𝑤 } ) ) | |
| 86 | 55 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) → 𝑥 ∈ 𝐴 ) |
| 87 | 4 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 88 | 2 87 | fsumcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 89 | 88 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 90 | 89 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 91 | 90 | r19.21bi | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 92 | 86 91 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) ) → Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 93 | 59 85 68 92 | fsumsplit | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 = ( Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 + Σ 𝑥 ∈ { 𝑤 } Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 94 | 46 | sumeq1d | ⊢ ( 𝑥 = 𝑧 → Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 𝐶 ) |
| 95 | nfcv | ⊢ Ⅎ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 | |
| 96 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 97 | 45 96 | nfsum | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 𝐶 |
| 98 | 94 95 97 | cbvsum | ⊢ Σ 𝑥 ∈ { 𝑤 } Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ { 𝑤 } Σ 𝑘 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 𝐶 |
| 99 | 48 | snss | ⊢ ( 𝑤 ∈ 𝐴 ↔ { 𝑤 } ⊆ 𝐴 ) |
| 100 | 56 99 | sylibr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → 𝑤 ∈ 𝐴 ) |
| 101 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 | |
| 102 | 101 96 | nfsum | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 |
| 103 | 102 | nfel1 | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ∈ ℂ |
| 104 | csbeq1a | ⊢ ( 𝑥 = 𝑤 → 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) | |
| 105 | 104 | sumeq1d | ⊢ ( 𝑥 = 𝑤 → Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) |
| 106 | 105 | eleq1d | ⊢ ( 𝑥 = 𝑤 → ( Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ↔ Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ∈ ℂ ) ) |
| 107 | 103 106 | rspc | ⊢ ( 𝑤 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ → Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ∈ ℂ ) ) |
| 108 | 100 90 107 | sylc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ∈ ℂ ) |
| 109 | 49 | sumeq1d | ⊢ ( 𝑧 = 𝑤 → Σ 𝑘 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 𝐶 = Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) |
| 110 | 109 | sumsn | ⊢ ( ( 𝑤 ∈ V ∧ Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ∈ ℂ ) → Σ 𝑧 ∈ { 𝑤 } Σ 𝑘 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 𝐶 = Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) |
| 111 | 48 108 110 | sylancr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑧 ∈ { 𝑤 } Σ 𝑘 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 𝐶 = Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) |
| 112 | 98 111 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑥 ∈ { 𝑤 } Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) |
| 113 | 112 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 + Σ 𝑥 ∈ { 𝑤 } Σ 𝑘 ∈ 𝐵 𝐶 ) = ( Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) ) |
| 114 | 93 113 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 = ( Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) ) |
| 115 | 84 114 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ↔ ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) = ( Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 + Σ 𝑘 ∈ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 𝐶 ) ) ) |
| 116 | 43 115 | imbitrrid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) ∧ ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 ) → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 117 | 116 | ex | ⊢ ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → ( Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 118 | 117 | a2d | ⊢ ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) → ( ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 119 | 42 118 | syl5 | ⊢ ( ( 𝜑 ∧ ¬ 𝑤 ∈ 𝑧 ) → ( ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 120 | 119 | expcom | ⊢ ( ¬ 𝑤 ∈ 𝑧 → ( 𝜑 → ( ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 121 | 120 | a2d | ⊢ ( ¬ 𝑤 ∈ 𝑧 → ( ( 𝜑 → ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) ) → ( 𝜑 → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 122 | 121 | adantl | ⊢ ( ( 𝑧 ∈ Fin ∧ ¬ 𝑤 ∈ 𝑧 ) → ( ( 𝜑 → ( 𝑧 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝑧 𝐵 𝐶 = Σ 𝑥 ∈ 𝑧 Σ 𝑘 ∈ 𝐵 𝐶 ) ) → ( 𝜑 → ( ( 𝑧 ∪ { 𝑤 } ) ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 𝐶 = Σ 𝑥 ∈ ( 𝑧 ∪ { 𝑤 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 123 | 14 21 28 35 39 122 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 124 | 1 123 | mpcom | ⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 125 | 5 124 | mpi | ⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝐶 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) |