This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difrab | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∖ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 2 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } | |
| 3 | 1 2 | difeq12i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∖ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∖ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) |
| 4 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) } | |
| 5 | difab | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∖ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) } | |
| 6 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) ) | |
| 7 | simpr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝜓 ) | |
| 8 | 7 | con3i | ⊢ ( ¬ 𝜓 → ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 9 | 8 | anim2i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ 𝜓 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 10 | pm3.2 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜓 → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝜓 → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 12 | 11 | con3d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ¬ 𝜓 ) ) |
| 13 | 12 | imdistani | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ 𝜓 ) ) |
| 14 | 9 13 | impbii | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ 𝜓 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 15 | 6 14 | bitr3i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 16 | 15 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) } = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) } |
| 17 | 5 16 | eqtr4i | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∖ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) } |
| 18 | 4 17 | eqtr4i | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } = ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∖ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) |
| 19 | 3 18 | eqtr4i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∖ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } |