This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial coefficient counts the number of subsets of a finite set of a given size. This is Metamath 100 proof #58 (formula for the number of combinations). (Contributed by Mario Carneiro, 13-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashbc | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ∅ ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝑤 = ∅ → ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ( ♯ ‘ ∅ ) C 𝑘 ) ) |
| 3 | pweq | ⊢ ( 𝑤 = ∅ → 𝒫 𝑤 = 𝒫 ∅ ) | |
| 4 | 3 | rabeqdv | ⊢ ( 𝑤 = ∅ → { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑤 = ∅ → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 6 | 2 5 | eqeq12d | ⊢ ( 𝑤 = ∅ → ( ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 7 | 6 | ralbidv | ⊢ ( 𝑤 = ∅ → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 8 | fveq2 | ⊢ ( 𝑤 = 𝑦 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑦 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑤 = 𝑦 → ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ( ♯ ‘ 𝑦 ) C 𝑘 ) ) |
| 10 | pweq | ⊢ ( 𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦 ) | |
| 11 | 10 | rabeqdv | ⊢ ( 𝑤 = 𝑦 → { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
| 12 | 11 | fveq2d | ⊢ ( 𝑤 = 𝑦 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 13 | 9 12 | eqeq12d | ⊢ ( 𝑤 = 𝑦 → ( ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 14 | 13 | ralbidv | ⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 16 | 15 | oveq1d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) ) |
| 17 | pweq | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → 𝒫 𝑤 = 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) | |
| 18 | 17 | rabeqdv | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
| 19 | 18 | fveq2d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 20 | 16 19 | eqeq12d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑤 = 𝐴 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝐴 ) ) | |
| 23 | 22 | oveq1d | ⊢ ( 𝑤 = 𝐴 → ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ( ♯ ‘ 𝐴 ) C 𝑘 ) ) |
| 24 | pweq | ⊢ ( 𝑤 = 𝐴 → 𝒫 𝑤 = 𝒫 𝐴 ) | |
| 25 | 24 | rabeqdv | ⊢ ( 𝑤 = 𝐴 → { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
| 26 | 25 | fveq2d | ⊢ ( 𝑤 = 𝐴 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 27 | 23 26 | eqeq12d | ⊢ ( 𝑤 = 𝐴 → ( ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 28 | 27 | ralbidv | ⊢ ( 𝑤 = 𝐴 → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑤 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑤 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 29 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 30 | 29 | a1i | ⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ♯ ‘ ∅ ) = 0 ) |
| 31 | elfz1eq | ⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 𝑘 = 0 ) | |
| 32 | 30 31 | oveq12d | ⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( 0 C 0 ) ) |
| 33 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 34 | bcn0 | ⊢ ( 0 ∈ ℕ0 → ( 0 C 0 ) = 1 ) | |
| 35 | 33 34 | ax-mp | ⊢ ( 0 C 0 ) = 1 |
| 36 | 32 35 | eqtrdi | ⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = 1 ) |
| 37 | 31 | eqcomd | ⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 0 = 𝑘 ) |
| 38 | pw0 | ⊢ 𝒫 ∅ = { ∅ } | |
| 39 | 38 | raleqi | ⊢ ( ∀ 𝑥 ∈ 𝒫 ∅ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ∀ 𝑥 ∈ { ∅ } ( ♯ ‘ 𝑥 ) = 𝑘 ) |
| 40 | 0ex | ⊢ ∅ ∈ V | |
| 41 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) | |
| 42 | 41 29 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
| 43 | 42 | eqeq1d | ⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝑥 ) = 𝑘 ↔ 0 = 𝑘 ) ) |
| 44 | 40 43 | ralsn | ⊢ ( ∀ 𝑥 ∈ { ∅ } ( ♯ ‘ 𝑥 ) = 𝑘 ↔ 0 = 𝑘 ) |
| 45 | 39 44 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝒫 ∅ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ 0 = 𝑘 ) |
| 46 | 37 45 | sylibr | ⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ∀ 𝑥 ∈ 𝒫 ∅ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
| 47 | rabid2 | ⊢ ( 𝒫 ∅ = { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ↔ ∀ 𝑥 ∈ 𝒫 ∅ ( ♯ ‘ 𝑥 ) = 𝑘 ) | |
| 48 | 46 47 | sylibr | ⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 𝒫 ∅ = { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
| 49 | 48 38 | eqtr3di | ⊢ ( 𝑘 ∈ ( 0 ... 0 ) → { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { ∅ } ) |
| 50 | 49 | fveq2d | ⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { ∅ } ) ) |
| 51 | hashsng | ⊢ ( ∅ ∈ V → ( ♯ ‘ { ∅ } ) = 1 ) | |
| 52 | 40 51 | ax-mp | ⊢ ( ♯ ‘ { ∅ } ) = 1 |
| 53 | 50 52 | eqtrdi | ⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = 1 ) |
| 54 | 36 53 | eqtr4d | ⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 55 | 54 | adantl | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ∈ ( 0 ... 0 ) ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 56 | 29 | oveq1i | ⊢ ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( 0 C 𝑘 ) |
| 57 | bcval3 | ⊢ ( ( 0 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = 0 ) | |
| 58 | 33 57 | mp3an1 | ⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = 0 ) |
| 59 | id | ⊢ ( 0 = 𝑘 → 0 = 𝑘 ) | |
| 60 | 0z | ⊢ 0 ∈ ℤ | |
| 61 | elfz3 | ⊢ ( 0 ∈ ℤ → 0 ∈ ( 0 ... 0 ) ) | |
| 62 | 60 61 | ax-mp | ⊢ 0 ∈ ( 0 ... 0 ) |
| 63 | 59 62 | eqeltrrdi | ⊢ ( 0 = 𝑘 → 𝑘 ∈ ( 0 ... 0 ) ) |
| 64 | 63 | con3i | ⊢ ( ¬ 𝑘 ∈ ( 0 ... 0 ) → ¬ 0 = 𝑘 ) |
| 65 | 64 | adantl | ⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ¬ 0 = 𝑘 ) |
| 66 | 38 | raleqi | ⊢ ( ∀ 𝑥 ∈ 𝒫 ∅ ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ∀ 𝑥 ∈ { ∅ } ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
| 67 | 43 | notbid | ⊢ ( 𝑥 = ∅ → ( ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ¬ 0 = 𝑘 ) ) |
| 68 | 40 67 | ralsn | ⊢ ( ∀ 𝑥 ∈ { ∅ } ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ¬ 0 = 𝑘 ) |
| 69 | 66 68 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝒫 ∅ ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ¬ 0 = 𝑘 ) |
| 70 | 65 69 | sylibr | ⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ∀ 𝑥 ∈ 𝒫 ∅ ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ) |
| 71 | rabeq0 | ⊢ ( { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = ∅ ↔ ∀ 𝑥 ∈ 𝒫 ∅ ¬ ( ♯ ‘ 𝑥 ) = 𝑘 ) | |
| 72 | 70 71 | sylibr | ⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = ∅ ) |
| 73 | 72 | fveq2d | ⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ ∅ ) ) |
| 74 | 73 29 | eqtrdi | ⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = 0 ) |
| 75 | 58 74 | eqtr4d | ⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 76 | 56 75 | eqtrid | ⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 77 | 55 76 | pm2.61dan | ⊢ ( 𝑘 ∈ ℤ → ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 78 | 77 | rgen | ⊢ ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ∅ ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) |
| 79 | oveq2 | ⊢ ( 𝑘 = 𝑗 → ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ( ♯ ‘ 𝑦 ) C 𝑗 ) ) | |
| 80 | eqeq2 | ⊢ ( 𝑘 = 𝑗 → ( ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ( ♯ ‘ 𝑥 ) = 𝑗 ) ) | |
| 81 | 80 | rabbidv | ⊢ ( 𝑘 = 𝑗 → { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) |
| 82 | fveqeq2 | ⊢ ( 𝑥 = 𝑧 → ( ( ♯ ‘ 𝑥 ) = 𝑗 ↔ ( ♯ ‘ 𝑧 ) = 𝑗 ) ) | |
| 83 | 82 | cbvrabv | ⊢ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } = { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } |
| 84 | 81 83 | eqtrdi | ⊢ ( 𝑘 = 𝑗 → { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) |
| 85 | 84 | fveq2d | ⊢ ( 𝑘 = 𝑗 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
| 86 | 79 85 | eqeq12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) |
| 87 | 86 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
| 88 | simpll | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → 𝑦 ∈ Fin ) | |
| 89 | simplr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 90 | simprr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) | |
| 91 | 83 | fveq2i | ⊢ ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) |
| 92 | 91 | eqeq2i | ⊢ ( ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ↔ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
| 93 | 92 | ralbii | ⊢ ( ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ↔ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) |
| 94 | 90 93 | sylibr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ) |
| 95 | simprl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → 𝑘 ∈ ℤ ) | |
| 96 | 88 89 94 95 | hashbclem | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑘 ∈ ℤ ∧ ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) ) ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 97 | 96 | expr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 98 | 97 | ralrimdva | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑗 ) = ( ♯ ‘ { 𝑧 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑧 ) = 𝑗 } ) → ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 99 | 87 98 | biimtrid | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝑦 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝑦 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) → ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 100 | 7 14 21 28 78 99 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ) |
| 101 | oveq2 | ⊢ ( 𝑘 = 𝐾 → ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ( ♯ ‘ 𝐴 ) C 𝐾 ) ) | |
| 102 | eqeq2 | ⊢ ( 𝑘 = 𝐾 → ( ( ♯ ‘ 𝑥 ) = 𝑘 ↔ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) | |
| 103 | 102 | rabbidv | ⊢ ( 𝑘 = 𝐾 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) |
| 104 | 103 | fveq2d | ⊢ ( 𝑘 = 𝐾 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |
| 105 | 101 104 | eqeq12d | ⊢ ( 𝑘 = 𝐾 → ( ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ↔ ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) ) |
| 106 | 105 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ℤ ( ( ♯ ‘ 𝐴 ) C 𝑘 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑘 } ) ∧ 𝐾 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |
| 107 | 100 106 | sylan | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |