This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a function C ( y ) such that C ( y ) = x for all y e. B ( x ) , then the sets B ( x ) for distinct x e. A are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | invdisj | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra2w | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 ) ) | |
| 3 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → ( 𝑦 ∈ 𝐵 → 𝐶 = 𝑥 ) ) | |
| 4 | eqcom | ⊢ ( 𝐶 = 𝑥 ↔ 𝑥 = 𝐶 ) | |
| 5 | 3 4 | imbitrdi | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → ( 𝑦 ∈ 𝐵 → 𝑥 = 𝐶 ) ) |
| 6 | 5 | imim2i | ⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝑥 = 𝐶 ) ) ) |
| 7 | 6 | impd | ⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = 𝐶 ) ) |
| 8 | 7 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = 𝐶 ) ) |
| 9 | 2 8 | sylbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = 𝐶 ) ) |
| 10 | mo2icl | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = 𝐶 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 11 | 9 10 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 12 | 1 11 | alrimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 13 | dfdisj2 | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 14 | 12 13 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → Disj 𝑥 ∈ 𝐴 𝐵 ) |