This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999) Avoid axioms. (Revised by SN, 4-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ss2rabi.1 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) | |
| Assertion | ss2rabi | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabi.1 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 → 𝜓 ) ) |
| 3 | 2 | ss2rabdv | ⊢ ( ⊤ → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| 4 | 3 | mptru | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } |