This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ss2rabi

Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999) Avoid axioms. (Revised by SN, 4-Feb-2025)

Ref Expression
Hypothesis ss2rabi.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
Assertion ss2rabi { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐴𝜓 }

Proof

Step Hyp Ref Expression
1 ss2rabi.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
2 1 adantl ( ( ⊤ ∧ 𝑥𝐴 ) → ( 𝜑𝜓 ) )
3 2 ss2rabdv ( ⊤ → { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐴𝜓 } )
4 3 mptru { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐴𝜓 }