This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | musumsum.1 | ⊢ ( 𝑚 = 1 → 𝐵 = 𝐶 ) | |
| musumsum.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| musumsum.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) | ||
| musumsum.4 | ⊢ ( 𝜑 → 1 ∈ 𝐴 ) | ||
| musumsum.5 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | musumsum | ⊢ ( 𝜑 → Σ 𝑚 ∈ 𝐴 Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ( ( μ ‘ 𝑘 ) · 𝐵 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | musumsum.1 | ⊢ ( 𝑚 = 1 → 𝐵 = 𝐶 ) | |
| 2 | musumsum.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | musumsum.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) | |
| 4 | musumsum.4 | ⊢ ( 𝜑 → 1 ∈ 𝐴 ) | |
| 5 | musumsum.5 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 6 | 3 | sselda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ ℕ ) |
| 7 | musum | ⊢ ( 𝑚 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ( μ ‘ 𝑘 ) = if ( 𝑚 = 1 , 1 , 0 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ( μ ‘ 𝑘 ) = if ( 𝑚 = 1 , 1 , 0 ) ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → ( Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ( μ ‘ 𝑘 ) · 𝐵 ) = ( if ( 𝑚 = 1 , 1 , 0 ) · 𝐵 ) ) |
| 10 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → ( 1 ... 𝑚 ) ∈ Fin ) | |
| 11 | dvdsssfz1 | ⊢ ( 𝑚 ∈ ℕ → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ⊆ ( 1 ... 𝑚 ) ) | |
| 12 | 6 11 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ⊆ ( 1 ... 𝑚 ) ) |
| 13 | 10 12 | ssfid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ∈ Fin ) |
| 14 | elrabi | ⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } → 𝑘 ∈ ℕ ) | |
| 15 | mucl | ⊢ ( 𝑘 ∈ ℕ → ( μ ‘ 𝑘 ) ∈ ℤ ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } → ( μ ‘ 𝑘 ) ∈ ℤ ) |
| 17 | 16 | zcnd | ⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } → ( μ ‘ 𝑘 ) ∈ ℂ ) |
| 18 | 17 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ) → ( μ ‘ 𝑘 ) ∈ ℂ ) |
| 19 | 13 5 18 | fsummulc1 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → ( Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ( μ ‘ 𝑘 ) · 𝐵 ) = Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ( ( μ ‘ 𝑘 ) · 𝐵 ) ) |
| 20 | ovif | ⊢ ( if ( 𝑚 = 1 , 1 , 0 ) · 𝐵 ) = if ( 𝑚 = 1 , ( 1 · 𝐵 ) , ( 0 · 𝐵 ) ) | |
| 21 | velsn | ⊢ ( 𝑚 ∈ { 1 } ↔ 𝑚 = 1 ) | |
| 22 | 21 | bicomi | ⊢ ( 𝑚 = 1 ↔ 𝑚 ∈ { 1 } ) |
| 23 | 22 | a1i | ⊢ ( 𝐵 ∈ ℂ → ( 𝑚 = 1 ↔ 𝑚 ∈ { 1 } ) ) |
| 24 | mullid | ⊢ ( 𝐵 ∈ ℂ → ( 1 · 𝐵 ) = 𝐵 ) | |
| 25 | mul02 | ⊢ ( 𝐵 ∈ ℂ → ( 0 · 𝐵 ) = 0 ) | |
| 26 | 23 24 25 | ifbieq12d | ⊢ ( 𝐵 ∈ ℂ → if ( 𝑚 = 1 , ( 1 · 𝐵 ) , ( 0 · 𝐵 ) ) = if ( 𝑚 ∈ { 1 } , 𝐵 , 0 ) ) |
| 27 | 5 26 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → if ( 𝑚 = 1 , ( 1 · 𝐵 ) , ( 0 · 𝐵 ) ) = if ( 𝑚 ∈ { 1 } , 𝐵 , 0 ) ) |
| 28 | 20 27 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → ( if ( 𝑚 = 1 , 1 , 0 ) · 𝐵 ) = if ( 𝑚 ∈ { 1 } , 𝐵 , 0 ) ) |
| 29 | 9 19 28 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ( ( μ ‘ 𝑘 ) · 𝐵 ) = if ( 𝑚 ∈ { 1 } , 𝐵 , 0 ) ) |
| 30 | 29 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑚 ∈ 𝐴 Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ( ( μ ‘ 𝑘 ) · 𝐵 ) = Σ 𝑚 ∈ 𝐴 if ( 𝑚 ∈ { 1 } , 𝐵 , 0 ) ) |
| 31 | 4 | snssd | ⊢ ( 𝜑 → { 1 } ⊆ 𝐴 ) |
| 32 | 31 | sselda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 1 } ) → 𝑚 ∈ 𝐴 ) |
| 33 | 32 5 | syldan | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 1 } ) → 𝐵 ∈ ℂ ) |
| 34 | 33 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ { 1 } 𝐵 ∈ ℂ ) |
| 35 | 2 | olcd | ⊢ ( 𝜑 → ( 𝐴 ⊆ ( ℤ≥ ‘ 1 ) ∨ 𝐴 ∈ Fin ) ) |
| 36 | sumss2 | ⊢ ( ( ( { 1 } ⊆ 𝐴 ∧ ∀ 𝑚 ∈ { 1 } 𝐵 ∈ ℂ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 1 ) ∨ 𝐴 ∈ Fin ) ) → Σ 𝑚 ∈ { 1 } 𝐵 = Σ 𝑚 ∈ 𝐴 if ( 𝑚 ∈ { 1 } , 𝐵 , 0 ) ) | |
| 37 | 31 34 35 36 | syl21anc | ⊢ ( 𝜑 → Σ 𝑚 ∈ { 1 } 𝐵 = Σ 𝑚 ∈ 𝐴 if ( 𝑚 ∈ { 1 } , 𝐵 , 0 ) ) |
| 38 | 1 | eleq1d | ⊢ ( 𝑚 = 1 → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
| 39 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 40 | 38 39 4 | rspcdva | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 41 | 1 | sumsn | ⊢ ( ( 1 ∈ 𝐴 ∧ 𝐶 ∈ ℂ ) → Σ 𝑚 ∈ { 1 } 𝐵 = 𝐶 ) |
| 42 | 4 40 41 | syl2anc | ⊢ ( 𝜑 → Σ 𝑚 ∈ { 1 } 𝐵 = 𝐶 ) |
| 43 | 30 37 42 | 3eqtr2d | ⊢ ( 𝜑 → Σ 𝑚 ∈ 𝐴 Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑚 } ( ( μ ‘ 𝑘 ) · 𝐵 ) = 𝐶 ) |