This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of the Möbius function over the divisors of N gives one if N = 1 , but otherwise always sums to zero. Theorem 2.1 in ApostolNT p. 25. This makes the Möbius function useful for inverting divisor sums; see also muinv . (Contributed by Mario Carneiro, 2-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | musum | |- ( N e. NN -> sum_ k e. { n e. NN | n || N } ( mmu ` k ) = if ( N = 1 , 1 , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( n = k -> ( mmu ` n ) = ( mmu ` k ) ) |
|
| 2 | 1 | neeq1d | |- ( n = k -> ( ( mmu ` n ) =/= 0 <-> ( mmu ` k ) =/= 0 ) ) |
| 3 | breq1 | |- ( n = k -> ( n || N <-> k || N ) ) |
|
| 4 | 2 3 | anbi12d | |- ( n = k -> ( ( ( mmu ` n ) =/= 0 /\ n || N ) <-> ( ( mmu ` k ) =/= 0 /\ k || N ) ) ) |
| 5 | 4 | elrab | |- ( k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } <-> ( k e. NN /\ ( ( mmu ` k ) =/= 0 /\ k || N ) ) ) |
| 6 | muval2 | |- ( ( k e. NN /\ ( mmu ` k ) =/= 0 ) -> ( mmu ` k ) = ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) ) |
|
| 7 | 6 | adantrr | |- ( ( k e. NN /\ ( ( mmu ` k ) =/= 0 /\ k || N ) ) -> ( mmu ` k ) = ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) ) |
| 8 | 5 7 | sylbi | |- ( k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } -> ( mmu ` k ) = ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) ) |
| 9 | 8 | adantl | |- ( ( N e. NN /\ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> ( mmu ` k ) = ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) ) |
| 10 | 9 | sumeq2dv | |- ( N e. NN -> sum_ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ( mmu ` k ) = sum_ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) ) |
| 11 | simpr | |- ( ( ( mmu ` n ) =/= 0 /\ n || N ) -> n || N ) |
|
| 12 | 11 | a1i | |- ( ( N e. NN /\ n e. NN ) -> ( ( ( mmu ` n ) =/= 0 /\ n || N ) -> n || N ) ) |
| 13 | 12 | ss2rabdv | |- ( N e. NN -> { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } C_ { n e. NN | n || N } ) |
| 14 | ssrab2 | |- { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } C_ NN |
|
| 15 | simpr | |- ( ( N e. NN /\ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) |
|
| 16 | 14 15 | sselid | |- ( ( N e. NN /\ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> k e. NN ) |
| 17 | mucl | |- ( k e. NN -> ( mmu ` k ) e. ZZ ) |
|
| 18 | 16 17 | syl | |- ( ( N e. NN /\ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> ( mmu ` k ) e. ZZ ) |
| 19 | 18 | zcnd | |- ( ( N e. NN /\ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> ( mmu ` k ) e. CC ) |
| 20 | difrab | |- ( { n e. NN | n || N } \ { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) = { n e. NN | ( n || N /\ -. ( ( mmu ` n ) =/= 0 /\ n || N ) ) } |
|
| 21 | pm3.21 | |- ( n || N -> ( ( mmu ` n ) =/= 0 -> ( ( mmu ` n ) =/= 0 /\ n || N ) ) ) |
|
| 22 | 21 | necon1bd | |- ( n || N -> ( -. ( ( mmu ` n ) =/= 0 /\ n || N ) -> ( mmu ` n ) = 0 ) ) |
| 23 | 22 | imp | |- ( ( n || N /\ -. ( ( mmu ` n ) =/= 0 /\ n || N ) ) -> ( mmu ` n ) = 0 ) |
| 24 | 23 | a1i | |- ( n e. NN -> ( ( n || N /\ -. ( ( mmu ` n ) =/= 0 /\ n || N ) ) -> ( mmu ` n ) = 0 ) ) |
| 25 | 24 | ss2rabi | |- { n e. NN | ( n || N /\ -. ( ( mmu ` n ) =/= 0 /\ n || N ) ) } C_ { n e. NN | ( mmu ` n ) = 0 } |
| 26 | 20 25 | eqsstri | |- ( { n e. NN | n || N } \ { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) C_ { n e. NN | ( mmu ` n ) = 0 } |
| 27 | 26 | sseli | |- ( k e. ( { n e. NN | n || N } \ { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> k e. { n e. NN | ( mmu ` n ) = 0 } ) |
| 28 | fveqeq2 | |- ( n = k -> ( ( mmu ` n ) = 0 <-> ( mmu ` k ) = 0 ) ) |
|
| 29 | 28 | elrab | |- ( k e. { n e. NN | ( mmu ` n ) = 0 } <-> ( k e. NN /\ ( mmu ` k ) = 0 ) ) |
| 30 | 29 | simprbi | |- ( k e. { n e. NN | ( mmu ` n ) = 0 } -> ( mmu ` k ) = 0 ) |
| 31 | 27 30 | syl | |- ( k e. ( { n e. NN | n || N } \ { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> ( mmu ` k ) = 0 ) |
| 32 | 31 | adantl | |- ( ( N e. NN /\ k e. ( { n e. NN | n || N } \ { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) ) -> ( mmu ` k ) = 0 ) |
| 33 | dvdsfi | |- ( N e. NN -> { n e. NN | n || N } e. Fin ) |
|
| 34 | 13 19 32 33 | fsumss | |- ( N e. NN -> sum_ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ( mmu ` k ) = sum_ k e. { n e. NN | n || N } ( mmu ` k ) ) |
| 35 | fveq2 | |- ( x = { p e. Prime | p || k } -> ( # ` x ) = ( # ` { p e. Prime | p || k } ) ) |
|
| 36 | 35 | oveq2d | |- ( x = { p e. Prime | p || k } -> ( -u 1 ^ ( # ` x ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) ) |
| 37 | 33 13 | ssfid | |- ( N e. NN -> { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } e. Fin ) |
| 38 | eqid | |- { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } = { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } |
|
| 39 | eqid | |- ( m e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } |-> { p e. Prime | p || m } ) = ( m e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } |-> { p e. Prime | p || m } ) |
|
| 40 | oveq1 | |- ( q = p -> ( q pCnt x ) = ( p pCnt x ) ) |
|
| 41 | 40 | cbvmptv | |- ( q e. Prime |-> ( q pCnt x ) ) = ( p e. Prime |-> ( p pCnt x ) ) |
| 42 | oveq2 | |- ( x = m -> ( p pCnt x ) = ( p pCnt m ) ) |
|
| 43 | 42 | mpteq2dv | |- ( x = m -> ( p e. Prime |-> ( p pCnt x ) ) = ( p e. Prime |-> ( p pCnt m ) ) ) |
| 44 | 41 43 | eqtrid | |- ( x = m -> ( q e. Prime |-> ( q pCnt x ) ) = ( p e. Prime |-> ( p pCnt m ) ) ) |
| 45 | 44 | cbvmptv | |- ( x e. NN |-> ( q e. Prime |-> ( q pCnt x ) ) ) = ( m e. NN |-> ( p e. Prime |-> ( p pCnt m ) ) ) |
| 46 | 38 39 45 | sqff1o | |- ( N e. NN -> ( m e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } |-> { p e. Prime | p || m } ) : { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } -1-1-onto-> ~P { p e. Prime | p || N } ) |
| 47 | breq2 | |- ( m = k -> ( p || m <-> p || k ) ) |
|
| 48 | 47 | rabbidv | |- ( m = k -> { p e. Prime | p || m } = { p e. Prime | p || k } ) |
| 49 | prmex | |- Prime e. _V |
|
| 50 | 49 | rabex | |- { p e. Prime | p || k } e. _V |
| 51 | 48 39 50 | fvmpt | |- ( k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } -> ( ( m e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } |-> { p e. Prime | p || m } ) ` k ) = { p e. Prime | p || k } ) |
| 52 | 51 | adantl | |- ( ( N e. NN /\ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> ( ( m e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } |-> { p e. Prime | p || m } ) ` k ) = { p e. Prime | p || k } ) |
| 53 | neg1cn | |- -u 1 e. CC |
|
| 54 | prmdvdsfi | |- ( N e. NN -> { p e. Prime | p || N } e. Fin ) |
|
| 55 | elpwi | |- ( x e. ~P { p e. Prime | p || N } -> x C_ { p e. Prime | p || N } ) |
|
| 56 | ssfi | |- ( ( { p e. Prime | p || N } e. Fin /\ x C_ { p e. Prime | p || N } ) -> x e. Fin ) |
|
| 57 | 54 55 56 | syl2an | |- ( ( N e. NN /\ x e. ~P { p e. Prime | p || N } ) -> x e. Fin ) |
| 58 | hashcl | |- ( x e. Fin -> ( # ` x ) e. NN0 ) |
|
| 59 | 57 58 | syl | |- ( ( N e. NN /\ x e. ~P { p e. Prime | p || N } ) -> ( # ` x ) e. NN0 ) |
| 60 | expcl | |- ( ( -u 1 e. CC /\ ( # ` x ) e. NN0 ) -> ( -u 1 ^ ( # ` x ) ) e. CC ) |
|
| 61 | 53 59 60 | sylancr | |- ( ( N e. NN /\ x e. ~P { p e. Prime | p || N } ) -> ( -u 1 ^ ( # ` x ) ) e. CC ) |
| 62 | 36 37 46 52 61 | fsumf1o | |- ( N e. NN -> sum_ x e. ~P { p e. Prime | p || N } ( -u 1 ^ ( # ` x ) ) = sum_ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) ) |
| 63 | fzfid | |- ( N e. NN -> ( 0 ... ( # ` { p e. Prime | p || N } ) ) e. Fin ) |
|
| 64 | 54 | adantr | |- ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> { p e. Prime | p || N } e. Fin ) |
| 65 | pwfi | |- ( { p e. Prime | p || N } e. Fin <-> ~P { p e. Prime | p || N } e. Fin ) |
|
| 66 | 64 65 | sylib | |- ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> ~P { p e. Prime | p || N } e. Fin ) |
| 67 | ssrab2 | |- { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } C_ ~P { p e. Prime | p || N } |
|
| 68 | ssfi | |- ( ( ~P { p e. Prime | p || N } e. Fin /\ { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } C_ ~P { p e. Prime | p || N } ) -> { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } e. Fin ) |
|
| 69 | 66 67 68 | sylancl | |- ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } e. Fin ) |
| 70 | simprr | |- ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) |
|
| 71 | fveqeq2 | |- ( s = x -> ( ( # ` s ) = z <-> ( # ` x ) = z ) ) |
|
| 72 | 71 | elrab | |- ( x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } <-> ( x e. ~P { p e. Prime | p || N } /\ ( # ` x ) = z ) ) |
| 73 | 72 | simprbi | |- ( x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } -> ( # ` x ) = z ) |
| 74 | 70 73 | syl | |- ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> ( # ` x ) = z ) |
| 75 | 74 | ralrimivva | |- ( N e. NN -> A. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) A. x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( # ` x ) = z ) |
| 76 | invdisj | |- ( A. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) A. x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( # ` x ) = z -> Disj_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) |
|
| 77 | 75 76 | syl | |- ( N e. NN -> Disj_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) |
| 78 | 54 | adantr | |- ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> { p e. Prime | p || N } e. Fin ) |
| 79 | 67 70 | sselid | |- ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> x e. ~P { p e. Prime | p || N } ) |
| 80 | 79 55 | syl | |- ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> x C_ { p e. Prime | p || N } ) |
| 81 | 78 80 | ssfid | |- ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> x e. Fin ) |
| 82 | 81 58 | syl | |- ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> ( # ` x ) e. NN0 ) |
| 83 | 53 82 60 | sylancr | |- ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> ( -u 1 ^ ( # ` x ) ) e. CC ) |
| 84 | 63 69 77 83 | fsumiun | |- ( N e. NN -> sum_ x e. U_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) = sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) ) |
| 85 | iunrab | |- U_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } = { s e. ~P { p e. Prime | p || N } | E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z } |
|
| 86 | 54 | adantr | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> { p e. Prime | p || N } e. Fin ) |
| 87 | elpwi | |- ( s e. ~P { p e. Prime | p || N } -> s C_ { p e. Prime | p || N } ) |
|
| 88 | 87 | adantl | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> s C_ { p e. Prime | p || N } ) |
| 89 | ssdomg | |- ( { p e. Prime | p || N } e. Fin -> ( s C_ { p e. Prime | p || N } -> s ~<_ { p e. Prime | p || N } ) ) |
|
| 90 | 86 88 89 | sylc | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> s ~<_ { p e. Prime | p || N } ) |
| 91 | ssfi | |- ( ( { p e. Prime | p || N } e. Fin /\ s C_ { p e. Prime | p || N } ) -> s e. Fin ) |
|
| 92 | 54 87 91 | syl2an | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> s e. Fin ) |
| 93 | hashdom | |- ( ( s e. Fin /\ { p e. Prime | p || N } e. Fin ) -> ( ( # ` s ) <_ ( # ` { p e. Prime | p || N } ) <-> s ~<_ { p e. Prime | p || N } ) ) |
|
| 94 | 92 86 93 | syl2anc | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( ( # ` s ) <_ ( # ` { p e. Prime | p || N } ) <-> s ~<_ { p e. Prime | p || N } ) ) |
| 95 | 90 94 | mpbird | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` s ) <_ ( # ` { p e. Prime | p || N } ) ) |
| 96 | hashcl | |- ( s e. Fin -> ( # ` s ) e. NN0 ) |
|
| 97 | 92 96 | syl | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` s ) e. NN0 ) |
| 98 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 99 | 97 98 | eleqtrdi | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` s ) e. ( ZZ>= ` 0 ) ) |
| 100 | hashcl | |- ( { p e. Prime | p || N } e. Fin -> ( # ` { p e. Prime | p || N } ) e. NN0 ) |
|
| 101 | 54 100 | syl | |- ( N e. NN -> ( # ` { p e. Prime | p || N } ) e. NN0 ) |
| 102 | 101 | adantr | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` { p e. Prime | p || N } ) e. NN0 ) |
| 103 | 102 | nn0zd | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` { p e. Prime | p || N } ) e. ZZ ) |
| 104 | elfz5 | |- ( ( ( # ` s ) e. ( ZZ>= ` 0 ) /\ ( # ` { p e. Prime | p || N } ) e. ZZ ) -> ( ( # ` s ) e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) <-> ( # ` s ) <_ ( # ` { p e. Prime | p || N } ) ) ) |
|
| 105 | 99 103 104 | syl2anc | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( ( # ` s ) e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) <-> ( # ` s ) <_ ( # ` { p e. Prime | p || N } ) ) ) |
| 106 | 95 105 | mpbird | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` s ) e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) |
| 107 | eqidd | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` s ) = ( # ` s ) ) |
|
| 108 | eqeq2 | |- ( z = ( # ` s ) -> ( ( # ` s ) = z <-> ( # ` s ) = ( # ` s ) ) ) |
|
| 109 | 108 | rspcev | |- ( ( ( # ` s ) e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ ( # ` s ) = ( # ` s ) ) -> E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z ) |
| 110 | 106 107 109 | syl2anc | |- ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z ) |
| 111 | 110 | ralrimiva | |- ( N e. NN -> A. s e. ~P { p e. Prime | p || N } E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z ) |
| 112 | rabid2 | |- ( ~P { p e. Prime | p || N } = { s e. ~P { p e. Prime | p || N } | E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z } <-> A. s e. ~P { p e. Prime | p || N } E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z ) |
|
| 113 | 111 112 | sylibr | |- ( N e. NN -> ~P { p e. Prime | p || N } = { s e. ~P { p e. Prime | p || N } | E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z } ) |
| 114 | 85 113 | eqtr4id | |- ( N e. NN -> U_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } = ~P { p e. Prime | p || N } ) |
| 115 | 114 | sumeq1d | |- ( N e. NN -> sum_ x e. U_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) = sum_ x e. ~P { p e. Prime | p || N } ( -u 1 ^ ( # ` x ) ) ) |
| 116 | elfznn0 | |- ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) -> z e. NN0 ) |
|
| 117 | 116 | adantl | |- ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> z e. NN0 ) |
| 118 | expcl | |- ( ( -u 1 e. CC /\ z e. NN0 ) -> ( -u 1 ^ z ) e. CC ) |
|
| 119 | 53 117 118 | sylancr | |- ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> ( -u 1 ^ z ) e. CC ) |
| 120 | fsumconst | |- ( ( { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } e. Fin /\ ( -u 1 ^ z ) e. CC ) -> sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ z ) = ( ( # ` { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) x. ( -u 1 ^ z ) ) ) |
|
| 121 | 69 119 120 | syl2anc | |- ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ z ) = ( ( # ` { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) x. ( -u 1 ^ z ) ) ) |
| 122 | 73 | adantl | |- ( ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) -> ( # ` x ) = z ) |
| 123 | 122 | oveq2d | |- ( ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) -> ( -u 1 ^ ( # ` x ) ) = ( -u 1 ^ z ) ) |
| 124 | 123 | sumeq2dv | |- ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) = sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ z ) ) |
| 125 | elfzelz | |- ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) -> z e. ZZ ) |
|
| 126 | hashbc | |- ( ( { p e. Prime | p || N } e. Fin /\ z e. ZZ ) -> ( ( # ` { p e. Prime | p || N } ) _C z ) = ( # ` { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) |
|
| 127 | 54 125 126 | syl2an | |- ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> ( ( # ` { p e. Prime | p || N } ) _C z ) = ( # ` { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) |
| 128 | 127 | oveq1d | |- ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> ( ( ( # ` { p e. Prime | p || N } ) _C z ) x. ( -u 1 ^ z ) ) = ( ( # ` { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) x. ( -u 1 ^ z ) ) ) |
| 129 | 121 124 128 | 3eqtr4d | |- ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) = ( ( ( # ` { p e. Prime | p || N } ) _C z ) x. ( -u 1 ^ z ) ) ) |
| 130 | 129 | sumeq2dv | |- ( N e. NN -> sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) = sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( ( ( # ` { p e. Prime | p || N } ) _C z ) x. ( -u 1 ^ z ) ) ) |
| 131 | 1pneg1e0 | |- ( 1 + -u 1 ) = 0 |
|
| 132 | 131 | oveq1i | |- ( ( 1 + -u 1 ) ^ ( # ` { p e. Prime | p || N } ) ) = ( 0 ^ ( # ` { p e. Prime | p || N } ) ) |
| 133 | binom1p | |- ( ( -u 1 e. CC /\ ( # ` { p e. Prime | p || N } ) e. NN0 ) -> ( ( 1 + -u 1 ) ^ ( # ` { p e. Prime | p || N } ) ) = sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( ( ( # ` { p e. Prime | p || N } ) _C z ) x. ( -u 1 ^ z ) ) ) |
|
| 134 | 53 101 133 | sylancr | |- ( N e. NN -> ( ( 1 + -u 1 ) ^ ( # ` { p e. Prime | p || N } ) ) = sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( ( ( # ` { p e. Prime | p || N } ) _C z ) x. ( -u 1 ^ z ) ) ) |
| 135 | 132 134 | eqtr3id | |- ( N e. NN -> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( ( ( # ` { p e. Prime | p || N } ) _C z ) x. ( -u 1 ^ z ) ) ) |
| 136 | eqeq2 | |- ( 1 = if ( N = 1 , 1 , 0 ) -> ( ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = 1 <-> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = if ( N = 1 , 1 , 0 ) ) ) |
|
| 137 | eqeq2 | |- ( 0 = if ( N = 1 , 1 , 0 ) -> ( ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = 0 <-> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = if ( N = 1 , 1 , 0 ) ) ) |
|
| 138 | nprmdvds1 | |- ( p e. Prime -> -. p || 1 ) |
|
| 139 | simpr | |- ( ( N e. NN /\ N = 1 ) -> N = 1 ) |
|
| 140 | 139 | breq2d | |- ( ( N e. NN /\ N = 1 ) -> ( p || N <-> p || 1 ) ) |
| 141 | 140 | notbid | |- ( ( N e. NN /\ N = 1 ) -> ( -. p || N <-> -. p || 1 ) ) |
| 142 | 138 141 | imbitrrid | |- ( ( N e. NN /\ N = 1 ) -> ( p e. Prime -> -. p || N ) ) |
| 143 | 142 | ralrimiv | |- ( ( N e. NN /\ N = 1 ) -> A. p e. Prime -. p || N ) |
| 144 | rabeq0 | |- ( { p e. Prime | p || N } = (/) <-> A. p e. Prime -. p || N ) |
|
| 145 | 143 144 | sylibr | |- ( ( N e. NN /\ N = 1 ) -> { p e. Prime | p || N } = (/) ) |
| 146 | 145 | fveq2d | |- ( ( N e. NN /\ N = 1 ) -> ( # ` { p e. Prime | p || N } ) = ( # ` (/) ) ) |
| 147 | hash0 | |- ( # ` (/) ) = 0 |
|
| 148 | 146 147 | eqtrdi | |- ( ( N e. NN /\ N = 1 ) -> ( # ` { p e. Prime | p || N } ) = 0 ) |
| 149 | 148 | oveq2d | |- ( ( N e. NN /\ N = 1 ) -> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = ( 0 ^ 0 ) ) |
| 150 | 0exp0e1 | |- ( 0 ^ 0 ) = 1 |
|
| 151 | 149 150 | eqtrdi | |- ( ( N e. NN /\ N = 1 ) -> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = 1 ) |
| 152 | df-ne | |- ( N =/= 1 <-> -. N = 1 ) |
|
| 153 | eluz2b3 | |- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) |
|
| 154 | 153 | biimpri | |- ( ( N e. NN /\ N =/= 1 ) -> N e. ( ZZ>= ` 2 ) ) |
| 155 | 152 154 | sylan2br | |- ( ( N e. NN /\ -. N = 1 ) -> N e. ( ZZ>= ` 2 ) ) |
| 156 | exprmfct | |- ( N e. ( ZZ>= ` 2 ) -> E. p e. Prime p || N ) |
|
| 157 | 155 156 | syl | |- ( ( N e. NN /\ -. N = 1 ) -> E. p e. Prime p || N ) |
| 158 | rabn0 | |- ( { p e. Prime | p || N } =/= (/) <-> E. p e. Prime p || N ) |
|
| 159 | 157 158 | sylibr | |- ( ( N e. NN /\ -. N = 1 ) -> { p e. Prime | p || N } =/= (/) ) |
| 160 | 54 | adantr | |- ( ( N e. NN /\ -. N = 1 ) -> { p e. Prime | p || N } e. Fin ) |
| 161 | hashnncl | |- ( { p e. Prime | p || N } e. Fin -> ( ( # ` { p e. Prime | p || N } ) e. NN <-> { p e. Prime | p || N } =/= (/) ) ) |
|
| 162 | 160 161 | syl | |- ( ( N e. NN /\ -. N = 1 ) -> ( ( # ` { p e. Prime | p || N } ) e. NN <-> { p e. Prime | p || N } =/= (/) ) ) |
| 163 | 159 162 | mpbird | |- ( ( N e. NN /\ -. N = 1 ) -> ( # ` { p e. Prime | p || N } ) e. NN ) |
| 164 | 163 | 0expd | |- ( ( N e. NN /\ -. N = 1 ) -> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = 0 ) |
| 165 | 136 137 151 164 | ifbothda | |- ( N e. NN -> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = if ( N = 1 , 1 , 0 ) ) |
| 166 | 130 135 165 | 3eqtr2d | |- ( N e. NN -> sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) = if ( N = 1 , 1 , 0 ) ) |
| 167 | 84 115 166 | 3eqtr3d | |- ( N e. NN -> sum_ x e. ~P { p e. Prime | p || N } ( -u 1 ^ ( # ` x ) ) = if ( N = 1 , 1 , 0 ) ) |
| 168 | 62 167 | eqtr3d | |- ( N e. NN -> sum_ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) = if ( N = 1 , 1 , 0 ) ) |
| 169 | 10 34 168 | 3eqtr3d | |- ( N e. NN -> sum_ k e. { n e. NN | n || N } ( mmu ` k ) = if ( N = 1 , 1 , 0 ) ) |