This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of the binomial theorem for ( 1 + A ) ^ N . (Contributed by Paul Chapman, 10-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom1p | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | binom | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) | |
| 3 | 1 2 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
| 4 | fznn0sub | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) |
| 6 | 5 | nn0zd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 − 𝑘 ) ∈ ℤ ) |
| 7 | 1exp | ⊢ ( ( 𝑁 − 𝑘 ) ∈ ℤ → ( 1 ↑ ( 𝑁 − 𝑘 ) ) = 1 ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 1 ↑ ( 𝑁 − 𝑘 ) ) = 1 ) |
| 9 | 8 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) = ( 1 · ( 𝐴 ↑ 𝑘 ) ) ) |
| 10 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 11 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) | |
| 12 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 13 | 10 11 12 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 14 | 13 | mullidd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 1 · ( 𝐴 ↑ 𝑘 ) ) = ( 𝐴 ↑ 𝑘 ) ) |
| 15 | 9 14 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) = ( 𝐴 ↑ 𝑘 ) ) |
| 16 | 15 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 C 𝑘 ) · ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 17 | 16 | sumeq2dv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 18 | 3 17 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |