This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Möbius inversion formula. If G ( n ) = sum_ k || n F ( k ) for every n e. NN , then F ( n ) = sum_ k || n mmu ( k ) G ( n / k ) = sum_ k || n mmu ( n / k ) G ( k ) , i.e. the Möbius function is the Dirichlet convolution inverse of the constant function 1 . Theorem 2.9 in ApostolNT p. 32. (Contributed by Mario Carneiro, 2-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | muinv.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℂ ) | |
| muinv.2 | ⊢ ( 𝜑 → 𝐺 = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | muinv | ⊢ ( 𝜑 → 𝐹 = ( 𝑚 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muinv.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℂ ) | |
| 2 | muinv.2 | ⊢ ( 𝜑 → 𝐺 = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) ) | |
| 3 | 1 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑚 ∈ ℕ ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
| 4 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝐺 = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) ) |
| 5 | 4 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) = ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑚 / 𝑗 ) ) ) |
| 6 | breq1 | ⊢ ( 𝑥 = 𝑗 → ( 𝑥 ∥ 𝑚 ↔ 𝑗 ∥ 𝑚 ) ) | |
| 7 | 6 | elrab | ⊢ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ↔ ( 𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑚 ) ) |
| 8 | 7 | simprbi | ⊢ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } → 𝑗 ∥ 𝑚 ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑗 ∥ 𝑚 ) |
| 10 | elrabi | ⊢ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } → 𝑗 ∈ ℕ ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑗 ∈ ℕ ) |
| 12 | 11 | nnzd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑗 ∈ ℤ ) |
| 13 | 11 | nnne0d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑗 ≠ 0 ) |
| 14 | nnz | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) | |
| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑚 ∈ ℤ ) |
| 16 | dvdsval2 | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑗 ≠ 0 ∧ 𝑚 ∈ ℤ ) → ( 𝑗 ∥ 𝑚 ↔ ( 𝑚 / 𝑗 ) ∈ ℤ ) ) | |
| 17 | 12 13 15 16 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑗 ∥ 𝑚 ↔ ( 𝑚 / 𝑗 ) ∈ ℤ ) ) |
| 18 | 9 17 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑚 / 𝑗 ) ∈ ℤ ) |
| 19 | nnre | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) | |
| 20 | nngt0 | ⊢ ( 𝑚 ∈ ℕ → 0 < 𝑚 ) | |
| 21 | 19 20 | jca | ⊢ ( 𝑚 ∈ ℕ → ( 𝑚 ∈ ℝ ∧ 0 < 𝑚 ) ) |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑚 ∈ ℝ ∧ 0 < 𝑚 ) ) |
| 23 | nnre | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) | |
| 24 | nngt0 | ⊢ ( 𝑗 ∈ ℕ → 0 < 𝑗 ) | |
| 25 | 23 24 | jca | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 ∈ ℝ ∧ 0 < 𝑗 ) ) |
| 26 | 11 25 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑗 ∈ ℝ ∧ 0 < 𝑗 ) ) |
| 27 | divgt0 | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 0 < 𝑚 ) ∧ ( 𝑗 ∈ ℝ ∧ 0 < 𝑗 ) ) → 0 < ( 𝑚 / 𝑗 ) ) | |
| 28 | 22 26 27 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 0 < ( 𝑚 / 𝑗 ) ) |
| 29 | elnnz | ⊢ ( ( 𝑚 / 𝑗 ) ∈ ℕ ↔ ( ( 𝑚 / 𝑗 ) ∈ ℤ ∧ 0 < ( 𝑚 / 𝑗 ) ) ) | |
| 30 | 18 28 29 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑚 / 𝑗 ) ∈ ℕ ) |
| 31 | breq2 | ⊢ ( 𝑛 = ( 𝑚 / 𝑗 ) → ( 𝑥 ∥ 𝑛 ↔ 𝑥 ∥ ( 𝑚 / 𝑗 ) ) ) | |
| 32 | 31 | rabbidv | ⊢ ( 𝑛 = ( 𝑚 / 𝑗 ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ) |
| 33 | 32 | sumeq1d | ⊢ ( 𝑛 = ( 𝑚 / 𝑗 ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ) |
| 34 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) | |
| 35 | sumex | ⊢ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ∈ V | |
| 36 | 33 34 35 | fvmpt | ⊢ ( ( 𝑚 / 𝑗 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑚 / 𝑗 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ) |
| 37 | 30 36 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑚 / 𝑗 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ) |
| 38 | 5 37 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ) |
| 39 | 38 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) = ( ( μ ‘ 𝑗 ) · Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ) ) |
| 40 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 1 ... ( 𝑚 / 𝑗 ) ) ∈ Fin ) | |
| 41 | dvdsssfz1 | ⊢ ( ( 𝑚 / 𝑗 ) ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ⊆ ( 1 ... ( 𝑚 / 𝑗 ) ) ) | |
| 42 | 30 41 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ⊆ ( 1 ... ( 𝑚 / 𝑗 ) ) ) |
| 43 | 40 42 | ssfid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ∈ Fin ) |
| 44 | mucl | ⊢ ( 𝑗 ∈ ℕ → ( μ ‘ 𝑗 ) ∈ ℤ ) | |
| 45 | 11 44 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( μ ‘ 𝑗 ) ∈ ℤ ) |
| 46 | 45 | zcnd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( μ ‘ 𝑗 ) ∈ ℂ ) |
| 47 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝐹 : ℕ ⟶ ℂ ) |
| 48 | elrabi | ⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } → 𝑘 ∈ ℕ ) | |
| 49 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ℂ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 50 | 47 48 49 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 51 | 43 46 50 | fsummulc2 | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( μ ‘ 𝑗 ) · Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 52 | 39 51 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 53 | 52 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) = Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 54 | simpr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) | |
| 55 | 46 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ) ) → ( μ ‘ 𝑗 ) ∈ ℂ ) |
| 56 | 50 | anasss | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 57 | 55 56 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ) ) → ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 58 | 54 57 | fsumdvdsdiag | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 59 | ssrab2 | ⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ⊆ ℕ | |
| 60 | dvdsdivcl | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑚 / 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) | |
| 61 | 60 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑚 / 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) |
| 62 | 59 61 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑚 / 𝑘 ) ∈ ℕ ) |
| 63 | musum | ⊢ ( ( 𝑚 / 𝑘 ) ∈ ℕ → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( μ ‘ 𝑗 ) = if ( ( 𝑚 / 𝑘 ) = 1 , 1 , 0 ) ) | |
| 64 | 62 63 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( μ ‘ 𝑗 ) = if ( ( 𝑚 / 𝑘 ) = 1 , 1 , 0 ) ) |
| 65 | 64 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) = ( if ( ( 𝑚 / 𝑘 ) = 1 , 1 , 0 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 66 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 1 ... ( 𝑚 / 𝑘 ) ) ∈ Fin ) | |
| 67 | dvdsssfz1 | ⊢ ( ( 𝑚 / 𝑘 ) ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ⊆ ( 1 ... ( 𝑚 / 𝑘 ) ) ) | |
| 68 | 62 67 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ⊆ ( 1 ... ( 𝑚 / 𝑘 ) ) ) |
| 69 | 66 68 | ssfid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ∈ Fin ) |
| 70 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 : ℕ ⟶ ℂ ) |
| 71 | elrabi | ⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } → 𝑘 ∈ ℕ ) | |
| 72 | 70 71 49 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 73 | ssrab2 | ⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ⊆ ℕ | |
| 74 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ) → 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ) | |
| 75 | 73 74 | sselid | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ) → 𝑗 ∈ ℕ ) |
| 76 | 75 44 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ) → ( μ ‘ 𝑗 ) ∈ ℤ ) |
| 77 | 76 | zcnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ) → ( μ ‘ 𝑗 ) ∈ ℂ ) |
| 78 | 69 72 77 | fsummulc1 | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 79 | ovif | ⊢ ( if ( ( 𝑚 / 𝑘 ) = 1 , 1 , 0 ) · ( 𝐹 ‘ 𝑘 ) ) = if ( ( 𝑚 / 𝑘 ) = 1 , ( 1 · ( 𝐹 ‘ 𝑘 ) ) , ( 0 · ( 𝐹 ‘ 𝑘 ) ) ) | |
| 80 | nncn | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) | |
| 81 | 80 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑚 ∈ ℂ ) |
| 82 | 71 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑘 ∈ ℕ ) |
| 83 | 82 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑘 ∈ ℂ ) |
| 84 | 1cnd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 1 ∈ ℂ ) | |
| 85 | 82 | nnne0d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑘 ≠ 0 ) |
| 86 | 81 83 84 85 | divmuld | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( 𝑚 / 𝑘 ) = 1 ↔ ( 𝑘 · 1 ) = 𝑚 ) ) |
| 87 | 83 | mulridd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑘 · 1 ) = 𝑘 ) |
| 88 | 87 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( 𝑘 · 1 ) = 𝑚 ↔ 𝑘 = 𝑚 ) ) |
| 89 | 86 88 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( 𝑚 / 𝑘 ) = 1 ↔ 𝑘 = 𝑚 ) ) |
| 90 | 72 | mullidd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 1 · ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 91 | 72 | mul02d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 0 · ( 𝐹 ‘ 𝑘 ) ) = 0 ) |
| 92 | 89 90 91 | ifbieq12d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → if ( ( 𝑚 / 𝑘 ) = 1 , ( 1 · ( 𝐹 ‘ 𝑘 ) ) , ( 0 · ( 𝐹 ‘ 𝑘 ) ) ) = if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 93 | 79 92 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( if ( ( 𝑚 / 𝑘 ) = 1 , 1 , 0 ) · ( 𝐹 ‘ 𝑘 ) ) = if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 94 | 65 78 93 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) = if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 95 | 94 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 96 | breq1 | ⊢ ( 𝑥 = 𝑚 → ( 𝑥 ∥ 𝑚 ↔ 𝑚 ∥ 𝑚 ) ) | |
| 97 | 54 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℤ ) |
| 98 | iddvds | ⊢ ( 𝑚 ∈ ℤ → 𝑚 ∥ 𝑚 ) | |
| 99 | 97 98 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∥ 𝑚 ) |
| 100 | 96 54 99 | elrabd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) |
| 101 | 100 | snssd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → { 𝑚 } ⊆ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) |
| 102 | 101 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑚 } ) → 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) |
| 103 | 102 72 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑚 } ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 104 | 0cn | ⊢ 0 ∈ ℂ | |
| 105 | ifcl | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ ℂ ) | |
| 106 | 103 104 105 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑚 } ) → if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ ℂ ) |
| 107 | eldifsni | ⊢ ( 𝑘 ∈ ( { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∖ { 𝑚 } ) → 𝑘 ≠ 𝑚 ) | |
| 108 | 107 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∖ { 𝑚 } ) ) → 𝑘 ≠ 𝑚 ) |
| 109 | 108 | neneqd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∖ { 𝑚 } ) ) → ¬ 𝑘 = 𝑚 ) |
| 110 | 109 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∖ { 𝑚 } ) ) → if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
| 111 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 1 ... 𝑚 ) ∈ Fin ) | |
| 112 | dvdsssfz1 | ⊢ ( 𝑚 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ⊆ ( 1 ... 𝑚 ) ) | |
| 113 | 112 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ⊆ ( 1 ... 𝑚 ) ) |
| 114 | 111 113 | ssfid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∈ Fin ) |
| 115 | 101 106 110 114 | fsumss | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑚 } if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 116 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 117 | iftrue | ⊢ ( 𝑘 = 𝑚 → if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 118 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 119 | 117 118 | eqtrd | ⊢ ( 𝑘 = 𝑚 → if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 120 | 119 | sumsn | ⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) → Σ 𝑘 ∈ { 𝑚 } if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 121 | 54 116 120 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑚 } if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 122 | 95 115 121 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑚 ) ) |
| 123 | 53 58 122 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) = ( 𝐹 ‘ 𝑚 ) ) |
| 124 | 123 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
| 125 | 3 124 | eqtr4d | ⊢ ( 𝜑 → 𝐹 = ( 𝑚 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) ) ) |