This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . The convergent point of the Cauchy sequence F attains the minimum distance, and so is closer to A than any other point in Y . (Contributed by Mario Carneiro, 7-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | ||
| minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | ||
| minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | ||
| minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | ||
| minveco.f | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑌 ) | ||
| minveco.1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) | ||
| minveco.t | ⊢ 𝑇 = ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) | ||
| Assertion | minvecolem4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 5 | minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | |
| 6 | minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | |
| 7 | minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 8 | minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 9 | minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 10 | minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 11 | minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | |
| 12 | minveco.f | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑌 ) | |
| 13 | minveco.1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) | |
| 14 | minveco.t | ⊢ 𝑇 = ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) | |
| 15 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 16 | 1 8 | imsxmet | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 17 | 5 15 16 | 3syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 18 | 9 | methaus | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
| 19 | lmfun | ⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 20 | 17 18 19 | 3syl | ⊢ ( 𝜑 → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4a | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
| 22 | eqid | ⊢ ( 𝐽 ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) | |
| 23 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 24 | 4 | fvexi | ⊢ 𝑌 ∈ V |
| 25 | 24 | a1i | ⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 26 | 5 15 | syl | ⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
| 27 | 9 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 28 | 26 16 27 | 3syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 29 | elin | ⊢ ( 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ↔ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) | |
| 30 | 6 29 | sylib | ⊢ ( 𝜑 → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) |
| 31 | 30 | simpld | ⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| 32 | eqid | ⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) | |
| 33 | 1 4 32 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
| 34 | 26 31 33 | syl2anc | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 35 | xmetres2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 36 | 17 34 35 | syl2anc | ⊢ ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
| 37 | eqid | ⊢ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) | |
| 38 | 37 | mopntopon | ⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 39 | 36 38 | syl | ⊢ ( 𝜑 → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 40 | lmcl | ⊢ ( ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) → ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ∈ 𝑌 ) | |
| 41 | 39 21 40 | syl2anc | ⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ∈ 𝑌 ) |
| 42 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 43 | 22 23 25 28 41 42 12 | lmss | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( 𝐽 ↾t 𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
| 44 | eqid | ⊢ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) | |
| 45 | 44 9 37 | metrest | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 46 | 17 34 45 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 47 | 46 | fveq2d | ⊢ ( 𝜑 → ( ⇝𝑡 ‘ ( 𝐽 ↾t 𝑌 ) ) = ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
| 48 | 47 | breqd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( 𝐽 ↾t 𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
| 49 | 43 48 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
| 50 | 21 49 | mpbird | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
| 51 | funbrfv | ⊢ ( Fun ( ⇝𝑡 ‘ 𝐽 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | |
| 52 | 20 50 51 | sylc | ⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
| 53 | 52 41 | eqeltrd | ⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑌 ) |
| 54 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4b | ⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑋 ) |
| 55 | 1 2 3 8 | imsdval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑋 ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) |
| 56 | 26 7 54 55 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) |
| 58 | 1 8 | imsmet | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 59 | 5 15 58 | 3syl | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 60 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑋 ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ∈ ℝ ) | |
| 61 | 59 7 54 60 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ∈ ℝ ) |
| 62 | 61 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ∈ ℝ ) |
| 63 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4c | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 64 | 63 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑆 ∈ ℝ ) |
| 65 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑈 ∈ NrmCVec ) |
| 66 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
| 67 | 34 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
| 68 | 1 2 | nvmcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) |
| 69 | 65 66 67 68 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) |
| 70 | 1 3 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ ) |
| 71 | 65 69 70 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ ) |
| 72 | 63 61 | ltnled | ⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ↔ ¬ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) ) |
| 73 | eqid | ⊢ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) = ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) | |
| 74 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 75 | 61 63 | readdcld | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ∈ ℝ ) |
| 76 | 75 | rehalfcld | ⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ∈ ℝ ) |
| 77 | 76 | resqcld | ⊢ ( 𝜑 → ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ∈ ℝ ) |
| 78 | 63 | resqcld | ⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
| 79 | 77 78 | resubcld | ⊢ ( 𝜑 → ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ ) |
| 80 | 79 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ ) |
| 81 | 63 61 63 | ltadd1d | ⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ↔ ( 𝑆 + 𝑆 ) < ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ) ) |
| 82 | 63 | recnd | ⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
| 83 | 82 | 2timesd | ⊢ ( 𝜑 → ( 2 · 𝑆 ) = ( 𝑆 + 𝑆 ) ) |
| 84 | 83 | breq1d | ⊢ ( 𝜑 → ( ( 2 · 𝑆 ) < ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ ( 𝑆 + 𝑆 ) < ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ) ) |
| 85 | 2re | ⊢ 2 ∈ ℝ | |
| 86 | 2pos | ⊢ 0 < 2 | |
| 87 | 85 86 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 88 | 87 | a1i | ⊢ ( 𝜑 → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 89 | ltmuldiv2 | ⊢ ( ( 𝑆 ∈ ℝ ∧ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝑆 ) < ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ 𝑆 < ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) | |
| 90 | 63 75 88 89 | syl3anc | ⊢ ( 𝜑 → ( ( 2 · 𝑆 ) < ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ 𝑆 < ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) |
| 91 | 81 84 90 | 3bitr2d | ⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ↔ 𝑆 < ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) |
| 92 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 | ⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 93 | 92 | simp3d | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
| 94 | 92 | simp1d | ⊢ ( 𝜑 → 𝑅 ⊆ ℝ ) |
| 95 | 92 | simp2d | ⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
| 96 | 0re | ⊢ 0 ∈ ℝ | |
| 97 | breq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤 ) ) | |
| 98 | 97 | ralbidv | ⊢ ( 𝑥 = 0 → ( ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 99 | 98 | rspcev | ⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 100 | 96 93 99 | sylancr | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 101 | 96 | a1i | ⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 102 | infregelb | ⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ 0 ∈ ℝ ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) | |
| 103 | 94 95 100 101 102 | syl31anc | ⊢ ( 𝜑 → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 104 | 93 103 | mpbird | ⊢ ( 𝜑 → 0 ≤ inf ( 𝑅 , ℝ , < ) ) |
| 105 | 104 11 | breqtrrdi | ⊢ ( 𝜑 → 0 ≤ 𝑆 ) |
| 106 | metge0 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) | |
| 107 | 59 7 54 106 | syl3anc | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) |
| 108 | 61 63 107 105 | addge0d | ⊢ ( 𝜑 → 0 ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ) |
| 109 | divge0 | ⊢ ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) | |
| 110 | 75 108 88 109 | syl21anc | ⊢ ( 𝜑 → 0 ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) |
| 111 | 63 76 105 110 | lt2sqd | ⊢ ( 𝜑 → ( 𝑆 < ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↔ ( 𝑆 ↑ 2 ) < ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ) ) |
| 112 | 78 77 | posdifd | ⊢ ( 𝜑 → ( ( 𝑆 ↑ 2 ) < ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ↔ 0 < ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ) |
| 113 | 91 111 112 | 3bitrd | ⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ↔ 0 < ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ) |
| 114 | 113 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 0 < ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) |
| 115 | 80 114 | elrpd | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ+ ) |
| 116 | 115 | rpreccld | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ∈ ℝ+ ) |
| 117 | 14 116 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝑇 ∈ ℝ+ ) |
| 118 | 117 | rprege0d | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( 𝑇 ∈ ℝ ∧ 0 ≤ 𝑇 ) ) |
| 119 | flge0nn0 | ⊢ ( ( 𝑇 ∈ ℝ ∧ 0 ≤ 𝑇 ) → ( ⌊ ‘ 𝑇 ) ∈ ℕ0 ) | |
| 120 | nn0p1nn | ⊢ ( ( ⌊ ‘ 𝑇 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝑇 ) + 1 ) ∈ ℕ ) | |
| 121 | 118 119 120 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( ⌊ ‘ 𝑇 ) + 1 ) ∈ ℕ ) |
| 122 | 121 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( ⌊ ‘ 𝑇 ) + 1 ) ∈ ℤ ) |
| 123 | 50 52 | breqtrrd | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) |
| 124 | 123 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) |
| 125 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐴 ∈ 𝑋 ) |
| 126 | 76 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ∈ ℝ ) |
| 127 | 126 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ∈ ℝ* ) |
| 128 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝜑 ) | |
| 129 | eluznn | ⊢ ( ( ( ( ⌊ ‘ 𝑇 ) + 1 ) ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) | |
| 130 | 121 129 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) |
| 131 | 59 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 132 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ 𝑋 ) |
| 133 | 12 34 | fssd | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) |
| 134 | 133 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 135 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) | |
| 136 | 131 132 134 135 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 137 | 128 130 136 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 138 | 137 | resqcld | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ∈ ℝ ) |
| 139 | 63 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑆 ∈ ℝ ) |
| 140 | 139 | resqcld | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
| 141 | 130 | nnrecred | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 142 | 140 141 | readdcld | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 143 | 77 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ∈ ℝ ) |
| 144 | 128 130 13 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 145 | 117 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑇 ∈ ℝ+ ) |
| 146 | 145 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑇 ∈ ℝ ) |
| 147 | reflcl | ⊢ ( 𝑇 ∈ ℝ → ( ⌊ ‘ 𝑇 ) ∈ ℝ ) | |
| 148 | peano2re | ⊢ ( ( ⌊ ‘ 𝑇 ) ∈ ℝ → ( ( ⌊ ‘ 𝑇 ) + 1 ) ∈ ℝ ) | |
| 149 | 146 147 148 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( ⌊ ‘ 𝑇 ) + 1 ) ∈ ℝ ) |
| 150 | 130 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑛 ∈ ℝ ) |
| 151 | fllep1 | ⊢ ( 𝑇 ∈ ℝ → 𝑇 ≤ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) | |
| 152 | 146 151 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑇 ≤ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) |
| 153 | eluzle | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) → ( ( ⌊ ‘ 𝑇 ) + 1 ) ≤ 𝑛 ) | |
| 154 | 153 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( ⌊ ‘ 𝑇 ) + 1 ) ≤ 𝑛 ) |
| 155 | 146 149 150 152 154 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑇 ≤ 𝑛 ) |
| 156 | 14 155 | eqbrtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ≤ 𝑛 ) |
| 157 | 1red | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 1 ∈ ℝ ) | |
| 158 | 79 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ ) |
| 159 | 114 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 0 < ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) |
| 160 | 130 | nngt0d | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 0 < 𝑛 ) |
| 161 | lediv23 | ⊢ ( ( 1 ∈ ℝ ∧ ( ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ ∧ 0 < ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ≤ 𝑛 ↔ ( 1 / 𝑛 ) ≤ ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ) | |
| 162 | 157 158 159 150 160 161 | syl122anc | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ≤ 𝑛 ↔ ( 1 / 𝑛 ) ≤ ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ) |
| 163 | 156 162 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( 1 / 𝑛 ) ≤ ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) |
| 164 | 140 141 143 | leaddsub2d | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ↔ ( 1 / 𝑛 ) ≤ ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ) |
| 165 | 163 164 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ) |
| 166 | 138 142 143 144 165 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ) |
| 167 | 76 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ∈ ℝ ) |
| 168 | metge0 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) | |
| 169 | 131 132 134 168 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) |
| 170 | 128 130 169 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 0 ≤ ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) |
| 171 | 110 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 0 ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) |
| 172 | 137 167 170 171 | le2sqd | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↔ ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ) ) |
| 173 | 166 172 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) |
| 174 | 73 9 74 122 124 125 127 173 | lmle | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) |
| 175 | 61 63 61 | leadd2d | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ↔ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ) ) |
| 176 | 61 | recnd | ⊢ ( 𝜑 → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ∈ ℂ ) |
| 177 | 176 | 2timesd | ⊢ ( 𝜑 → ( 2 · ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) = ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) |
| 178 | 177 | breq1d | ⊢ ( 𝜑 → ( ( 2 · ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ) ) |
| 179 | lemuldiv2 | ⊢ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ∈ ℝ ∧ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) | |
| 180 | 87 179 | mp3an3 | ⊢ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ∈ ℝ ∧ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ∈ ℝ ) → ( ( 2 · ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) |
| 181 | 61 75 180 | syl2anc | ⊢ ( 𝜑 → ( ( 2 · ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) |
| 182 | 175 178 181 | 3bitr2d | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ↔ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) |
| 183 | 182 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) |
| 184 | 174 183 | syldan | ⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) |
| 185 | 184 | ex | ⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) ) |
| 186 | 72 185 | sylbird | ⊢ ( 𝜑 → ( ¬ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) ) |
| 187 | 186 | pm2.18d | ⊢ ( 𝜑 → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) |
| 188 | 187 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) |
| 189 | 94 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑅 ⊆ ℝ ) |
| 190 | 100 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 191 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) | |
| 192 | fvex | ⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V | |
| 193 | eqid | ⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 194 | 193 | elrnmpt1 | ⊢ ( ( 𝑦 ∈ 𝑌 ∧ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 195 | 191 192 194 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 196 | 195 10 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ 𝑅 ) |
| 197 | infrelb | ⊢ ( ( 𝑅 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ∧ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ 𝑅 ) → inf ( 𝑅 , ℝ , < ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 198 | 189 190 196 197 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → inf ( 𝑅 , ℝ , < ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 199 | 11 198 | eqbrtrid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑆 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 200 | 62 64 71 188 199 | letrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 201 | 57 200 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 202 | 201 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 203 | oveq2 | ⊢ ( 𝑥 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) → ( 𝐴 𝑀 𝑥 ) = ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) | |
| 204 | 203 | fveq2d | ⊢ ( 𝑥 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) |
| 205 | 204 | breq1d | ⊢ ( 𝑥 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 206 | 205 | ralbidv | ⊢ ( 𝑥 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) → ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 207 | 206 | rspcev | ⊢ ( ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 208 | 53 202 207 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |