This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generated by a metric space is Hausdorff. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | methaus.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | methaus | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | methaus.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | mopnex | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∃ 𝑑 ∈ ( Met ‘ 𝑋 ) 𝐽 = ( MetOpen ‘ 𝑑 ) ) |
| 3 | metxmet | ⊢ ( 𝑑 ∈ ( Met ‘ 𝑋 ) → 𝑑 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑑 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 5 | simplrl | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ 𝑋 ) | |
| 6 | metcl | ⊢ ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑑 𝑦 ) ∈ ℝ ) | |
| 7 | 6 | 3expb | ⊢ ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑑 𝑦 ) ∈ ℝ ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 𝑑 𝑦 ) ∈ ℝ ) |
| 9 | metgt0 | ⊢ ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ≠ 𝑦 ↔ 0 < ( 𝑥 𝑑 𝑦 ) ) ) | |
| 10 | 9 | 3expb | ⊢ ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ≠ 𝑦 ↔ 0 < ( 𝑥 𝑑 𝑦 ) ) ) |
| 11 | 10 | biimpa | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → 0 < ( 𝑥 𝑑 𝑦 ) ) |
| 12 | 8 11 | elrpd | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 𝑑 𝑦 ) ∈ ℝ+ ) |
| 13 | 12 | rphalfcld | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑥 𝑑 𝑦 ) / 2 ) ∈ ℝ+ ) |
| 14 | 13 | rpxrd | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑥 𝑑 𝑦 ) / 2 ) ∈ ℝ* ) |
| 15 | eqid | ⊢ ( MetOpen ‘ 𝑑 ) = ( MetOpen ‘ 𝑑 ) | |
| 16 | 15 | blopn | ⊢ ( ( 𝑑 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 𝑑 𝑦 ) / 2 ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∈ ( MetOpen ‘ 𝑑 ) ) |
| 17 | 4 5 14 16 | syl3anc | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∈ ( MetOpen ‘ 𝑑 ) ) |
| 18 | simplrr | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 ∈ 𝑋 ) | |
| 19 | 15 | blopn | ⊢ ( ( 𝑑 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ ( ( 𝑥 𝑑 𝑦 ) / 2 ) ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∈ ( MetOpen ‘ 𝑑 ) ) |
| 20 | 4 18 14 19 | syl3anc | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∈ ( MetOpen ‘ 𝑑 ) ) |
| 21 | blcntr | ⊢ ( ( 𝑑 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 𝑑 𝑦 ) / 2 ) ∈ ℝ+ ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) | |
| 22 | 4 5 13 21 | syl3anc | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) |
| 23 | blcntr | ⊢ ( ( 𝑑 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ ( ( 𝑥 𝑑 𝑦 ) / 2 ) ∈ ℝ+ ) → 𝑦 ∈ ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) | |
| 24 | 4 18 13 23 | syl3anc | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 ∈ ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) |
| 25 | 13 | rpred | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑥 𝑑 𝑦 ) / 2 ) ∈ ℝ ) |
| 26 | 25 25 | rexaddd | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝑥 𝑑 𝑦 ) / 2 ) +𝑒 ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) = ( ( ( 𝑥 𝑑 𝑦 ) / 2 ) + ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) |
| 27 | 8 | recnd | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 𝑑 𝑦 ) ∈ ℂ ) |
| 28 | 27 | 2halvesd | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝑥 𝑑 𝑦 ) / 2 ) + ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) = ( 𝑥 𝑑 𝑦 ) ) |
| 29 | 26 28 | eqtrd | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝑥 𝑑 𝑦 ) / 2 ) +𝑒 ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) = ( 𝑥 𝑑 𝑦 ) ) |
| 30 | 8 | leidd | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 𝑑 𝑦 ) ≤ ( 𝑥 𝑑 𝑦 ) ) |
| 31 | 29 30 | eqbrtrd | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝑥 𝑑 𝑦 ) / 2 ) +𝑒 ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ≤ ( 𝑥 𝑑 𝑦 ) ) |
| 32 | bldisj | ⊢ ( ( ( 𝑑 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) / 2 ) ∈ ℝ* ∧ ( ( 𝑥 𝑑 𝑦 ) / 2 ) ∈ ℝ* ∧ ( ( ( 𝑥 𝑑 𝑦 ) / 2 ) +𝑒 ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ≤ ( 𝑥 𝑑 𝑦 ) ) ) → ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) = ∅ ) | |
| 33 | 4 5 18 14 14 31 32 | syl33anc | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) = ∅ ) |
| 34 | eleq2 | ⊢ ( 𝑚 = ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) → ( 𝑥 ∈ 𝑚 ↔ 𝑥 ∈ ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) ) | |
| 35 | ineq1 | ⊢ ( 𝑚 = ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) → ( 𝑚 ∩ 𝑛 ) = ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∩ 𝑛 ) ) | |
| 36 | 35 | eqeq1d | ⊢ ( 𝑚 = ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) → ( ( 𝑚 ∩ 𝑛 ) = ∅ ↔ ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∩ 𝑛 ) = ∅ ) ) |
| 37 | 34 36 | 3anbi13d | ⊢ ( 𝑚 = ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) → ( ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∧ 𝑦 ∈ 𝑛 ∧ ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∩ 𝑛 ) = ∅ ) ) ) |
| 38 | eleq2 | ⊢ ( 𝑛 = ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) → ( 𝑦 ∈ 𝑛 ↔ 𝑦 ∈ ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) ) | |
| 39 | ineq2 | ⊢ ( 𝑛 = ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) → ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∩ 𝑛 ) = ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) ) | |
| 40 | 39 | eqeq1d | ⊢ ( 𝑛 = ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) → ( ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∩ 𝑛 ) = ∅ ↔ ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) = ∅ ) ) |
| 41 | 38 40 | 3anbi23d | ⊢ ( 𝑛 = ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) → ( ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∧ 𝑦 ∈ 𝑛 ∧ ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∩ 𝑛 ) = ∅ ) ↔ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∧ 𝑦 ∈ ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∧ ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) = ∅ ) ) ) |
| 42 | 37 41 | rspc2ev | ⊢ ( ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∈ ( MetOpen ‘ 𝑑 ) ∧ ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∈ ( MetOpen ‘ 𝑑 ) ∧ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∧ 𝑦 ∈ ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∧ ( ( 𝑥 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝑑 ) ( ( 𝑥 𝑑 𝑦 ) / 2 ) ) ) = ∅ ) ) → ∃ 𝑚 ∈ ( MetOpen ‘ 𝑑 ) ∃ 𝑛 ∈ ( MetOpen ‘ 𝑑 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 43 | 17 20 22 24 33 42 | syl113anc | ⊢ ( ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑥 ≠ 𝑦 ) → ∃ 𝑚 ∈ ( MetOpen ‘ 𝑑 ) ∃ 𝑛 ∈ ( MetOpen ‘ 𝑑 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 44 | 43 | ex | ⊢ ( ( 𝑑 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( MetOpen ‘ 𝑑 ) ∃ 𝑛 ∈ ( MetOpen ‘ 𝑑 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 45 | 44 | ralrimivva | ⊢ ( 𝑑 ∈ ( Met ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( MetOpen ‘ 𝑑 ) ∃ 𝑛 ∈ ( MetOpen ‘ 𝑑 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 46 | 15 | mopntopon | ⊢ ( 𝑑 ∈ ( ∞Met ‘ 𝑋 ) → ( MetOpen ‘ 𝑑 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 47 | ishaus2 | ⊢ ( ( MetOpen ‘ 𝑑 ) ∈ ( TopOn ‘ 𝑋 ) → ( ( MetOpen ‘ 𝑑 ) ∈ Haus ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( MetOpen ‘ 𝑑 ) ∃ 𝑛 ∈ ( MetOpen ‘ 𝑑 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) | |
| 48 | 3 46 47 | 3syl | ⊢ ( 𝑑 ∈ ( Met ‘ 𝑋 ) → ( ( MetOpen ‘ 𝑑 ) ∈ Haus ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑚 ∈ ( MetOpen ‘ 𝑑 ) ∃ 𝑛 ∈ ( MetOpen ‘ 𝑑 ) ( 𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 49 | 45 48 | mpbird | ⊢ ( 𝑑 ∈ ( Met ‘ 𝑋 ) → ( MetOpen ‘ 𝑑 ) ∈ Haus ) |
| 50 | eleq1 | ⊢ ( 𝐽 = ( MetOpen ‘ 𝑑 ) → ( 𝐽 ∈ Haus ↔ ( MetOpen ‘ 𝑑 ) ∈ Haus ) ) | |
| 51 | 49 50 | syl5ibrcom | ⊢ ( 𝑑 ∈ ( Met ‘ 𝑋 ) → ( 𝐽 = ( MetOpen ‘ 𝑑 ) → 𝐽 ∈ Haus ) ) |
| 52 | 51 | rexlimiv | ⊢ ( ∃ 𝑑 ∈ ( Met ‘ 𝑋 ) 𝐽 = ( MetOpen ‘ 𝑑 ) → 𝐽 ∈ Haus ) |
| 53 | 2 52 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |