This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap denominator with other side of 'less than or equal to'. (Contributed by NM, 30-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lediv23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 𝐶 ↔ ( 𝐴 / 𝐶 ) ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 2 | gt0ne0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) | |
| 3 | 1 2 | jca | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) |
| 4 | redivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 5 | 4 | 3expb | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 6 | 3 5 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ 𝐶 ∈ ℝ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 8 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) | |
| 9 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) | |
| 10 | lemul1 | ⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 𝐶 ↔ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ≤ ( 𝐶 · 𝐵 ) ) ) | |
| 11 | 7 8 9 10 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 / 𝐵 ) ≤ 𝐶 ↔ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ≤ ( 𝐶 · 𝐵 ) ) ) |
| 12 | 11 | 3adant3r | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 𝐶 ↔ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ≤ ( 𝐶 · 𝐵 ) ) ) |
| 13 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 15 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 16 | 15 | ad2antrl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 17 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ≠ 0 ) |
| 18 | 14 16 17 | divcan1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) |
| 20 | 19 | breq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( ( 𝐴 / 𝐵 ) · 𝐵 ) ≤ ( 𝐶 · 𝐵 ) ↔ 𝐴 ≤ ( 𝐶 · 𝐵 ) ) ) |
| 21 | remulcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) | |
| 22 | 21 | ancoms | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
| 23 | 22 | adantrr | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
| 24 | 23 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
| 25 | lediv1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐶 · 𝐵 ) ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ ( 𝐶 · 𝐵 ) ↔ ( 𝐴 / 𝐶 ) ≤ ( ( 𝐶 · 𝐵 ) / 𝐶 ) ) ) | |
| 26 | 24 25 | syld3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ ( 𝐶 · 𝐵 ) ↔ ( 𝐴 / 𝐶 ) ≤ ( ( 𝐶 · 𝐵 ) / 𝐶 ) ) ) |
| 27 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ∈ ℂ ) |
| 29 | gt0ne0 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ≠ 0 ) | |
| 30 | 28 29 | jca | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) |
| 31 | divcan3 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) | |
| 32 | 31 | 3expb | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) |
| 33 | 15 30 32 | syl2an | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) |
| 34 | 33 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) |
| 35 | 34 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐶 ) ≤ ( ( 𝐶 · 𝐵 ) / 𝐶 ) ↔ ( 𝐴 / 𝐶 ) ≤ 𝐵 ) ) |
| 36 | 26 35 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ ( 𝐶 · 𝐵 ) ↔ ( 𝐴 / 𝐶 ) ≤ 𝐵 ) ) |
| 37 | 36 | 3adant2r | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ ( 𝐶 · 𝐵 ) ↔ ( 𝐴 / 𝐶 ) ≤ 𝐵 ) ) |
| 38 | 12 20 37 | 3bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 𝐶 ↔ ( 𝐴 / 𝐶 ) ≤ 𝐵 ) ) |