This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013) (Revised by AV, 4-Sep-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infregelb | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧 ∈ 𝐴 𝐵 ≤ 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | ⊢ < Or ℝ | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → < Or ℝ ) |
| 3 | infm3 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑤 ∈ 𝐴 𝑤 < 𝑦 ) ) ) | |
| 4 | simp1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → 𝐴 ⊆ ℝ ) | |
| 5 | 2 3 4 | infglbb | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( inf ( 𝐴 , ℝ , < ) < 𝐵 ↔ ∃ 𝑤 ∈ 𝐴 𝑤 < 𝐵 ) ) |
| 6 | 5 | notbid | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( ¬ inf ( 𝐴 , ℝ , < ) < 𝐵 ↔ ¬ ∃ 𝑤 ∈ 𝐴 𝑤 < 𝐵 ) ) |
| 7 | infrecl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
| 8 | 7 | anim1i | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( inf ( 𝐴 , ℝ , < ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 9 | 8 | ancomd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ∈ ℝ ∧ inf ( 𝐴 , ℝ , < ) ∈ ℝ ) ) |
| 10 | lenlt | ⊢ ( ( 𝐵 ∈ ℝ ∧ inf ( 𝐴 , ℝ , < ) ∈ ℝ ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ , < ) ↔ ¬ inf ( 𝐴 , ℝ , < ) < 𝐵 ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ , < ) ↔ ¬ inf ( 𝐴 , ℝ , < ) < 𝐵 ) ) |
| 12 | simplr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑤 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 13 | ssel | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑤 ∈ 𝐴 → 𝑤 ∈ ℝ ) ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑤 ∈ 𝐴 → 𝑤 ∈ ℝ ) ) |
| 15 | 14 | imp | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) |
| 16 | 12 15 | lenltd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵 ) ) |
| 17 | 16 | ralbidva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵 ) ) |
| 18 | 17 | 3ad2antl1 | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵 ) ) |
| 19 | ralnex | ⊢ ( ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵 ↔ ¬ ∃ 𝑤 ∈ 𝐴 𝑤 < 𝐵 ) | |
| 20 | 18 19 | bitrdi | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ¬ ∃ 𝑤 ∈ 𝐴 𝑤 < 𝐵 ) ) |
| 21 | 6 11 20 | 3bitr4d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ) ) |
| 22 | breq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝐵 ≤ 𝑤 ↔ 𝐵 ≤ 𝑧 ) ) | |
| 23 | 22 | cbvralvw | ⊢ ( ∀ 𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀ 𝑧 ∈ 𝐴 𝐵 ≤ 𝑧 ) |
| 24 | 21 23 | bitrdi | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧 ∈ 𝐴 𝐵 ≤ 𝑧 ) ) |