This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square function on nonnegative reals is strictly monotonic. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqgt0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| lt2sqd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| lt2sqd.3 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| lt2sqd.4 | ⊢ ( 𝜑 → 0 ≤ 𝐵 ) | ||
| Assertion | lt2sqd | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqgt0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | lt2sqd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | lt2sqd.3 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 4 | lt2sqd.4 | ⊢ ( 𝜑 → 0 ≤ 𝐵 ) | |
| 5 | lt2sq | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ) ) | |
| 6 | 1 3 2 4 5 | syl22anc | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ) ) |