This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The convergence relation is function-like in a Hausdorff space. (Contributed by Mario Carneiro, 26-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmfun | ⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmrel | ⊢ Rel ( ⇝𝑡 ‘ 𝐽 ) | |
| 2 | 1 | a1i | ⊢ ( 𝐽 ∈ Haus → Rel ( ⇝𝑡 ‘ 𝐽 ) ) |
| 3 | simpl | ⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) ) → 𝐽 ∈ Haus ) | |
| 4 | simprl | ⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) ) → 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) | |
| 5 | simprr | ⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) ) → 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) | |
| 6 | 3 4 5 | lmmo | ⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) ) → 𝑦 = 𝑧 ) |
| 7 | 6 | ex | ⊢ ( 𝐽 ∈ Haus → ( ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 8 | 7 | alrimiv | ⊢ ( 𝐽 ∈ Haus → ∀ 𝑧 ( ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 9 | 8 | alrimiv | ⊢ ( 𝐽 ∈ Haus → ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 10 | 9 | alrimiv | ⊢ ( 𝐽 ∈ Haus → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 11 | dffun2 | ⊢ ( Fun ( ⇝𝑡 ‘ 𝐽 ) ↔ ( Rel ( ⇝𝑡 ‘ 𝐽 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 12 | 2 10 11 | sylanbrc | ⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |