This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace W that minimizes the distance to an arbitrary vector A in a parent inner product space. Theorem 3.3-1 of Kreyszig p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008) (Proof shortened by Mario Carneiro, 9-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | ||
| minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | ||
| minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| Assertion | minveco | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 5 | minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | |
| 6 | minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | |
| 7 | minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 8 | eqid | ⊢ ( IndMet ‘ 𝑈 ) = ( IndMet ‘ 𝑈 ) | |
| 9 | eqid | ⊢ ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) = ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) | |
| 10 | oveq2 | ⊢ ( 𝑗 = 𝑦 → ( 𝐴 𝑀 𝑗 ) = ( 𝐴 𝑀 𝑦 ) ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑗 = 𝑦 → ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 12 | 11 | cbvmptv | ⊢ ( 𝑗 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 13 | 12 | rneqi | ⊢ ran ( 𝑗 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 14 | eqid | ⊢ inf ( ran ( 𝑗 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) , ℝ , < ) = inf ( ran ( 𝑗 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) , ℝ , < ) | |
| 15 | 1 2 3 4 5 6 7 8 9 13 14 | minvecolem7 | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |