This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . The convergent point of the Cauchy sequence F is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | ||
| minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | ||
| minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | ||
| minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | ||
| minveco.f | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑌 ) | ||
| minveco.1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) | ||
| Assertion | minvecolem4b | ⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 5 | minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | |
| 6 | minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | |
| 7 | minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 8 | minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 9 | minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 10 | minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 11 | minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | |
| 12 | minveco.f | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑌 ) | |
| 13 | minveco.1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) | |
| 14 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 15 | 5 14 | syl | ⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
| 16 | elin | ⊢ ( 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ↔ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) | |
| 17 | 6 16 | sylib | ⊢ ( 𝜑 → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) |
| 18 | 17 | simpld | ⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| 19 | eqid | ⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) | |
| 20 | 1 4 19 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
| 21 | 15 18 20 | syl2anc | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 22 | 1 8 | imsxmet | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 23 | 15 22 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 24 | 9 | methaus | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
| 25 | 23 24 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Haus ) |
| 26 | lmfun | ⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4a | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
| 29 | eqid | ⊢ ( 𝐽 ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) | |
| 30 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 31 | 4 | fvexi | ⊢ 𝑌 ∈ V |
| 32 | 31 | a1i | ⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 33 | 9 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 34 | 23 33 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 35 | xmetres2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 36 | 23 21 35 | syl2anc | ⊢ ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
| 37 | eqid | ⊢ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) | |
| 38 | 37 | mopntopon | ⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 39 | 36 38 | syl | ⊢ ( 𝜑 → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 40 | lmcl | ⊢ ( ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) → ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ∈ 𝑌 ) | |
| 41 | 39 28 40 | syl2anc | ⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ∈ 𝑌 ) |
| 42 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 43 | 29 30 32 34 41 42 12 | lmss | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( 𝐽 ↾t 𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
| 44 | eqid | ⊢ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) | |
| 45 | 44 9 37 | metrest | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 46 | 23 21 45 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 47 | 46 | fveq2d | ⊢ ( 𝜑 → ( ⇝𝑡 ‘ ( 𝐽 ↾t 𝑌 ) ) = ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
| 48 | 47 | breqd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( 𝐽 ↾t 𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
| 49 | 43 48 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
| 50 | 28 49 | mpbird | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
| 51 | funbrfv | ⊢ ( Fun ( ⇝𝑡 ‘ 𝐽 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | |
| 52 | 27 50 51 | sylc | ⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
| 53 | 52 41 | eqeltrd | ⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑌 ) |
| 54 | 21 53 | sseldd | ⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑋 ) |