This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ph | ⊢ CPreHilOLD = ( NrmCVec ∩ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) | |
| 2 | inss1 | ⊢ ( NrmCVec ∩ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) ⊆ NrmCVec | |
| 3 | 1 2 | eqsstri | ⊢ CPreHilOLD ⊆ NrmCVec |
| 4 | 3 | sseli | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |