This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rnmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| Assertion | elrnmpt1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | id | ⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) | |
| 4 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) | |
| 5 | 3 4 | eleq12d | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) ) |
| 6 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 7 | 6 | biantrud | ⊢ ( 𝑥 = 𝑧 → ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ↔ ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) ) |
| 8 | 5 7 | bitr2d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 9 | 8 | equcoms | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 10 | 2 9 | spcev | ⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑧 ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 11 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) | |
| 12 | nfv | ⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) | |
| 13 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 | |
| 14 | 13 | nfcri | ⊢ Ⅎ 𝑥 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 |
| 15 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 | |
| 16 | 15 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 17 | 14 16 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 18 | 6 | eqeq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 = 𝐵 ↔ 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 19 | 5 18 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) ) |
| 20 | 12 17 19 | cbvexv1 | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 21 | 11 20 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑧 ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 22 | eqeq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ↔ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) | |
| 23 | 22 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) ) |
| 24 | 23 | exbidv | ⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑧 ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) ) |
| 25 | 21 24 | bitrid | ⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑧 ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) ) |
| 26 | 1 | rnmpt | ⊢ ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
| 27 | 25 26 | elab2g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ran 𝐹 ↔ ∃ 𝑧 ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ∧ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) ) |
| 28 | 10 27 | imbitrrid | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ran 𝐹 ) ) |
| 29 | 28 | impcom | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ ran 𝐹 ) |