This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . The convergent point of the Cauchy sequence F attains the minimum distance, and so is closer to A than any other point in Y . (Contributed by Mario Carneiro, 7-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | |- X = ( BaseSet ` U ) |
|
| minveco.m | |- M = ( -v ` U ) |
||
| minveco.n | |- N = ( normCV ` U ) |
||
| minveco.y | |- Y = ( BaseSet ` W ) |
||
| minveco.u | |- ( ph -> U e. CPreHilOLD ) |
||
| minveco.w | |- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
||
| minveco.a | |- ( ph -> A e. X ) |
||
| minveco.d | |- D = ( IndMet ` U ) |
||
| minveco.j | |- J = ( MetOpen ` D ) |
||
| minveco.r | |- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
||
| minveco.s | |- S = inf ( R , RR , < ) |
||
| minveco.f | |- ( ph -> F : NN --> Y ) |
||
| minveco.1 | |- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
||
| minveco.t | |- T = ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) |
||
| Assertion | minvecolem4 | |- ( ph -> E. x e. Y A. y e. Y ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | |- X = ( BaseSet ` U ) |
|
| 2 | minveco.m | |- M = ( -v ` U ) |
|
| 3 | minveco.n | |- N = ( normCV ` U ) |
|
| 4 | minveco.y | |- Y = ( BaseSet ` W ) |
|
| 5 | minveco.u | |- ( ph -> U e. CPreHilOLD ) |
|
| 6 | minveco.w | |- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
|
| 7 | minveco.a | |- ( ph -> A e. X ) |
|
| 8 | minveco.d | |- D = ( IndMet ` U ) |
|
| 9 | minveco.j | |- J = ( MetOpen ` D ) |
|
| 10 | minveco.r | |- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
|
| 11 | minveco.s | |- S = inf ( R , RR , < ) |
|
| 12 | minveco.f | |- ( ph -> F : NN --> Y ) |
|
| 13 | minveco.1 | |- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
|
| 14 | minveco.t | |- T = ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) |
|
| 15 | phnv | |- ( U e. CPreHilOLD -> U e. NrmCVec ) |
|
| 16 | 1 8 | imsxmet | |- ( U e. NrmCVec -> D e. ( *Met ` X ) ) |
| 17 | 5 15 16 | 3syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 18 | 9 | methaus | |- ( D e. ( *Met ` X ) -> J e. Haus ) |
| 19 | lmfun | |- ( J e. Haus -> Fun ( ~~>t ` J ) ) |
|
| 20 | 17 18 19 | 3syl | |- ( ph -> Fun ( ~~>t ` J ) ) |
| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4a | |- ( ph -> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
| 22 | eqid | |- ( J |`t Y ) = ( J |`t Y ) |
|
| 23 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 24 | 4 | fvexi | |- Y e. _V |
| 25 | 24 | a1i | |- ( ph -> Y e. _V ) |
| 26 | 5 15 | syl | |- ( ph -> U e. NrmCVec ) |
| 27 | 9 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
| 28 | 26 16 27 | 3syl | |- ( ph -> J e. Top ) |
| 29 | elin | |- ( W e. ( ( SubSp ` U ) i^i CBan ) <-> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) |
|
| 30 | 6 29 | sylib | |- ( ph -> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) |
| 31 | 30 | simpld | |- ( ph -> W e. ( SubSp ` U ) ) |
| 32 | eqid | |- ( SubSp ` U ) = ( SubSp ` U ) |
|
| 33 | 1 4 32 | sspba | |- ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> Y C_ X ) |
| 34 | 26 31 33 | syl2anc | |- ( ph -> Y C_ X ) |
| 35 | xmetres2 | |- ( ( D e. ( *Met ` X ) /\ Y C_ X ) -> ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) ) |
|
| 36 | 17 34 35 | syl2anc | |- ( ph -> ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) ) |
| 37 | eqid | |- ( MetOpen ` ( D |` ( Y X. Y ) ) ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) |
|
| 38 | 37 | mopntopon | |- ( ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) ) |
| 39 | 36 38 | syl | |- ( ph -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) ) |
| 40 | lmcl | |- ( ( ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) /\ F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) -> ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) e. Y ) |
|
| 41 | 39 21 40 | syl2anc | |- ( ph -> ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) e. Y ) |
| 42 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 43 | 22 23 25 28 41 42 12 | lmss | |- ( ph -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( J |`t Y ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
| 44 | eqid | |- ( D |` ( Y X. Y ) ) = ( D |` ( Y X. Y ) ) |
|
| 45 | 44 9 37 | metrest | |- ( ( D e. ( *Met ` X ) /\ Y C_ X ) -> ( J |`t Y ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) |
| 46 | 17 34 45 | syl2anc | |- ( ph -> ( J |`t Y ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) |
| 47 | 46 | fveq2d | |- ( ph -> ( ~~>t ` ( J |`t Y ) ) = ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ) |
| 48 | 47 | breqd | |- ( ph -> ( F ( ~~>t ` ( J |`t Y ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
| 49 | 43 48 | bitrd | |- ( ph -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
| 50 | 21 49 | mpbird | |- ( ph -> F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
| 51 | funbrfv | |- ( Fun ( ~~>t ` J ) -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) -> ( ( ~~>t ` J ) ` F ) = ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
|
| 52 | 20 50 51 | sylc | |- ( ph -> ( ( ~~>t ` J ) ` F ) = ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
| 53 | 52 41 | eqeltrd | |- ( ph -> ( ( ~~>t ` J ) ` F ) e. Y ) |
| 54 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4b | |- ( ph -> ( ( ~~>t ` J ) ` F ) e. X ) |
| 55 | 1 2 3 8 | imsdval | |- ( ( U e. NrmCVec /\ A e. X /\ ( ( ~~>t ` J ) ` F ) e. X ) -> ( A D ( ( ~~>t ` J ) ` F ) ) = ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) ) |
| 56 | 26 7 54 55 | syl3anc | |- ( ph -> ( A D ( ( ~~>t ` J ) ` F ) ) = ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) ) |
| 57 | 56 | adantr | |- ( ( ph /\ y e. Y ) -> ( A D ( ( ~~>t ` J ) ` F ) ) = ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) ) |
| 58 | 1 8 | imsmet | |- ( U e. NrmCVec -> D e. ( Met ` X ) ) |
| 59 | 5 15 58 | 3syl | |- ( ph -> D e. ( Met ` X ) ) |
| 60 | metcl | |- ( ( D e. ( Met ` X ) /\ A e. X /\ ( ( ~~>t ` J ) ` F ) e. X ) -> ( A D ( ( ~~>t ` J ) ` F ) ) e. RR ) |
|
| 61 | 59 7 54 60 | syl3anc | |- ( ph -> ( A D ( ( ~~>t ` J ) ` F ) ) e. RR ) |
| 62 | 61 | adantr | |- ( ( ph /\ y e. Y ) -> ( A D ( ( ~~>t ` J ) ` F ) ) e. RR ) |
| 63 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem4c | |- ( ph -> S e. RR ) |
| 64 | 63 | adantr | |- ( ( ph /\ y e. Y ) -> S e. RR ) |
| 65 | 26 | adantr | |- ( ( ph /\ y e. Y ) -> U e. NrmCVec ) |
| 66 | 7 | adantr | |- ( ( ph /\ y e. Y ) -> A e. X ) |
| 67 | 34 | sselda | |- ( ( ph /\ y e. Y ) -> y e. X ) |
| 68 | 1 2 | nvmcl | |- ( ( U e. NrmCVec /\ A e. X /\ y e. X ) -> ( A M y ) e. X ) |
| 69 | 65 66 67 68 | syl3anc | |- ( ( ph /\ y e. Y ) -> ( A M y ) e. X ) |
| 70 | 1 3 | nvcl | |- ( ( U e. NrmCVec /\ ( A M y ) e. X ) -> ( N ` ( A M y ) ) e. RR ) |
| 71 | 65 69 70 | syl2anc | |- ( ( ph /\ y e. Y ) -> ( N ` ( A M y ) ) e. RR ) |
| 72 | 63 61 | ltnled | |- ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) <-> -. ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) ) |
| 73 | eqid | |- ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) = ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) |
|
| 74 | 17 | adantr | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> D e. ( *Met ` X ) ) |
| 75 | 61 63 | readdcld | |- ( ph -> ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR ) |
| 76 | 75 | rehalfcld | |- ( ph -> ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) e. RR ) |
| 77 | 76 | resqcld | |- ( ph -> ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) e. RR ) |
| 78 | 63 | resqcld | |- ( ph -> ( S ^ 2 ) e. RR ) |
| 79 | 77 78 | resubcld | |- ( ph -> ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR ) |
| 80 | 79 | adantr | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR ) |
| 81 | 63 61 63 | ltadd1d | |- ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) <-> ( S + S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) ) |
| 82 | 63 | recnd | |- ( ph -> S e. CC ) |
| 83 | 82 | 2timesd | |- ( ph -> ( 2 x. S ) = ( S + S ) ) |
| 84 | 83 | breq1d | |- ( ph -> ( ( 2 x. S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( S + S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) ) |
| 85 | 2re | |- 2 e. RR |
|
| 86 | 2pos | |- 0 < 2 |
|
| 87 | 85 86 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 88 | 87 | a1i | |- ( ph -> ( 2 e. RR /\ 0 < 2 ) ) |
| 89 | ltmuldiv2 | |- ( ( S e. RR /\ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> S < ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
|
| 90 | 63 75 88 89 | syl3anc | |- ( ph -> ( ( 2 x. S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> S < ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
| 91 | 81 84 90 | 3bitr2d | |- ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) <-> S < ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
| 92 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 | |- ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) |
| 93 | 92 | simp3d | |- ( ph -> A. w e. R 0 <_ w ) |
| 94 | 92 | simp1d | |- ( ph -> R C_ RR ) |
| 95 | 92 | simp2d | |- ( ph -> R =/= (/) ) |
| 96 | 0re | |- 0 e. RR |
|
| 97 | breq1 | |- ( x = 0 -> ( x <_ w <-> 0 <_ w ) ) |
|
| 98 | 97 | ralbidv | |- ( x = 0 -> ( A. w e. R x <_ w <-> A. w e. R 0 <_ w ) ) |
| 99 | 98 | rspcev | |- ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. x e. RR A. w e. R x <_ w ) |
| 100 | 96 93 99 | sylancr | |- ( ph -> E. x e. RR A. w e. R x <_ w ) |
| 101 | 96 | a1i | |- ( ph -> 0 e. RR ) |
| 102 | infregelb | |- ( ( ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) /\ 0 e. RR ) -> ( 0 <_ inf ( R , RR , < ) <-> A. w e. R 0 <_ w ) ) |
|
| 103 | 94 95 100 101 102 | syl31anc | |- ( ph -> ( 0 <_ inf ( R , RR , < ) <-> A. w e. R 0 <_ w ) ) |
| 104 | 93 103 | mpbird | |- ( ph -> 0 <_ inf ( R , RR , < ) ) |
| 105 | 104 11 | breqtrrdi | |- ( ph -> 0 <_ S ) |
| 106 | metge0 | |- ( ( D e. ( Met ` X ) /\ A e. X /\ ( ( ~~>t ` J ) ` F ) e. X ) -> 0 <_ ( A D ( ( ~~>t ` J ) ` F ) ) ) |
|
| 107 | 59 7 54 106 | syl3anc | |- ( ph -> 0 <_ ( A D ( ( ~~>t ` J ) ` F ) ) ) |
| 108 | 61 63 107 105 | addge0d | |- ( ph -> 0 <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) |
| 109 | divge0 | |- ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR /\ 0 <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) |
|
| 110 | 75 108 88 109 | syl21anc | |- ( ph -> 0 <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) |
| 111 | 63 76 105 110 | lt2sqd | |- ( ph -> ( S < ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) <-> ( S ^ 2 ) < ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) ) ) |
| 112 | 78 77 | posdifd | |- ( ph -> ( ( S ^ 2 ) < ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) <-> 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) |
| 113 | 91 111 112 | 3bitrd | |- ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) <-> 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) |
| 114 | 113 | biimpa | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) |
| 115 | 80 114 | elrpd | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR+ ) |
| 116 | 115 | rpreccld | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) e. RR+ ) |
| 117 | 14 116 | eqeltrid | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> T e. RR+ ) |
| 118 | 117 | rprege0d | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( T e. RR /\ 0 <_ T ) ) |
| 119 | flge0nn0 | |- ( ( T e. RR /\ 0 <_ T ) -> ( |_ ` T ) e. NN0 ) |
|
| 120 | nn0p1nn | |- ( ( |_ ` T ) e. NN0 -> ( ( |_ ` T ) + 1 ) e. NN ) |
|
| 121 | 118 119 120 | 3syl | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( |_ ` T ) + 1 ) e. NN ) |
| 122 | 121 | nnzd | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( |_ ` T ) + 1 ) e. ZZ ) |
| 123 | 50 52 | breqtrrd | |- ( ph -> F ( ~~>t ` J ) ( ( ~~>t ` J ) ` F ) ) |
| 124 | 123 | adantr | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> F ( ~~>t ` J ) ( ( ~~>t ` J ) ` F ) ) |
| 125 | 7 | adantr | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> A e. X ) |
| 126 | 76 | adantr | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) e. RR ) |
| 127 | 126 | rexrd | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) e. RR* ) |
| 128 | simpll | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ph ) |
|
| 129 | eluznn | |- ( ( ( ( |_ ` T ) + 1 ) e. NN /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> n e. NN ) |
|
| 130 | 121 129 | sylan | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> n e. NN ) |
| 131 | 59 | adantr | |- ( ( ph /\ n e. NN ) -> D e. ( Met ` X ) ) |
| 132 | 7 | adantr | |- ( ( ph /\ n e. NN ) -> A e. X ) |
| 133 | 12 34 | fssd | |- ( ph -> F : NN --> X ) |
| 134 | 133 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. X ) |
| 135 | metcl | |- ( ( D e. ( Met ` X ) /\ A e. X /\ ( F ` n ) e. X ) -> ( A D ( F ` n ) ) e. RR ) |
|
| 136 | 131 132 134 135 | syl3anc | |- ( ( ph /\ n e. NN ) -> ( A D ( F ` n ) ) e. RR ) |
| 137 | 128 130 136 | syl2anc | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( A D ( F ` n ) ) e. RR ) |
| 138 | 137 | resqcld | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) e. RR ) |
| 139 | 63 | ad2antrr | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> S e. RR ) |
| 140 | 139 | resqcld | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( S ^ 2 ) e. RR ) |
| 141 | 130 | nnrecred | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( 1 / n ) e. RR ) |
| 142 | 140 141 | readdcld | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / n ) ) e. RR ) |
| 143 | 77 | ad2antrr | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) e. RR ) |
| 144 | 128 130 13 | syl2anc | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
| 145 | 117 | adantr | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> T e. RR+ ) |
| 146 | 145 | rpred | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> T e. RR ) |
| 147 | reflcl | |- ( T e. RR -> ( |_ ` T ) e. RR ) |
|
| 148 | peano2re | |- ( ( |_ ` T ) e. RR -> ( ( |_ ` T ) + 1 ) e. RR ) |
|
| 149 | 146 147 148 | 3syl | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( |_ ` T ) + 1 ) e. RR ) |
| 150 | 130 | nnred | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> n e. RR ) |
| 151 | fllep1 | |- ( T e. RR -> T <_ ( ( |_ ` T ) + 1 ) ) |
|
| 152 | 146 151 | syl | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> T <_ ( ( |_ ` T ) + 1 ) ) |
| 153 | eluzle | |- ( n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) -> ( ( |_ ` T ) + 1 ) <_ n ) |
|
| 154 | 153 | adantl | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( |_ ` T ) + 1 ) <_ n ) |
| 155 | 146 149 150 152 154 | letrd | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> T <_ n ) |
| 156 | 14 155 | eqbrtrrid | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) <_ n ) |
| 157 | 1red | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 1 e. RR ) |
|
| 158 | 79 | ad2antrr | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR ) |
| 159 | 114 | adantr | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) |
| 160 | 130 | nngt0d | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 0 < n ) |
| 161 | lediv23 | |- ( ( 1 e. RR /\ ( ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR /\ 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) /\ ( n e. RR /\ 0 < n ) ) -> ( ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) <_ n <-> ( 1 / n ) <_ ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) |
|
| 162 | 157 158 159 150 160 161 | syl122anc | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) <_ n <-> ( 1 / n ) <_ ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) |
| 163 | 156 162 | mpbid | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( 1 / n ) <_ ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) |
| 164 | 140 141 143 | leaddsub2d | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( ( S ^ 2 ) + ( 1 / n ) ) <_ ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) <-> ( 1 / n ) <_ ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) |
| 165 | 163 164 | mpbird | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / n ) ) <_ ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) ) |
| 166 | 138 142 143 144 165 | letrd | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) ) |
| 167 | 76 | ad2antrr | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) e. RR ) |
| 168 | metge0 | |- ( ( D e. ( Met ` X ) /\ A e. X /\ ( F ` n ) e. X ) -> 0 <_ ( A D ( F ` n ) ) ) |
|
| 169 | 131 132 134 168 | syl3anc | |- ( ( ph /\ n e. NN ) -> 0 <_ ( A D ( F ` n ) ) ) |
| 170 | 128 130 169 | syl2anc | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 0 <_ ( A D ( F ` n ) ) ) |
| 171 | 110 | ad2antrr | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 0 <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) |
| 172 | 137 167 170 171 | le2sqd | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) <-> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) ) ) |
| 173 | 166 172 | mpbird | |- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( A D ( F ` n ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) |
| 174 | 73 9 74 122 124 125 127 173 | lmle | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) |
| 175 | 61 63 61 | leadd2d | |- ( ph -> ( ( A D ( ( ~~>t ` J ) ` F ) ) <_ S <-> ( ( A D ( ( ~~>t ` J ) ` F ) ) + ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) ) |
| 176 | 61 | recnd | |- ( ph -> ( A D ( ( ~~>t ` J ) ` F ) ) e. CC ) |
| 177 | 176 | 2timesd | |- ( ph -> ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) = ( ( A D ( ( ~~>t ` J ) ` F ) ) + ( A D ( ( ~~>t ` J ) ` F ) ) ) ) |
| 178 | 177 | breq1d | |- ( ph -> ( ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( ( A D ( ( ~~>t ` J ) ` F ) ) + ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) ) |
| 179 | lemuldiv2 | |- ( ( ( A D ( ( ~~>t ` J ) ` F ) ) e. RR /\ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
|
| 180 | 87 179 | mp3an3 | |- ( ( ( A D ( ( ~~>t ` J ) ` F ) ) e. RR /\ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR ) -> ( ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
| 181 | 61 75 180 | syl2anc | |- ( ph -> ( ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
| 182 | 175 178 181 | 3bitr2d | |- ( ph -> ( ( A D ( ( ~~>t ` J ) ` F ) ) <_ S <-> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
| 183 | 182 | biimpar | |- ( ( ph /\ ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) |
| 184 | 174 183 | syldan | |- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) |
| 185 | 184 | ex | |- ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) ) |
| 186 | 72 185 | sylbird | |- ( ph -> ( -. ( A D ( ( ~~>t ` J ) ` F ) ) <_ S -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) ) |
| 187 | 186 | pm2.18d | |- ( ph -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) |
| 188 | 187 | adantr | |- ( ( ph /\ y e. Y ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) |
| 189 | 94 | adantr | |- ( ( ph /\ y e. Y ) -> R C_ RR ) |
| 190 | 100 | adantr | |- ( ( ph /\ y e. Y ) -> E. x e. RR A. w e. R x <_ w ) |
| 191 | simpr | |- ( ( ph /\ y e. Y ) -> y e. Y ) |
|
| 192 | fvex | |- ( N ` ( A M y ) ) e. _V |
|
| 193 | eqid | |- ( y e. Y |-> ( N ` ( A M y ) ) ) = ( y e. Y |-> ( N ` ( A M y ) ) ) |
|
| 194 | 193 | elrnmpt1 | |- ( ( y e. Y /\ ( N ` ( A M y ) ) e. _V ) -> ( N ` ( A M y ) ) e. ran ( y e. Y |-> ( N ` ( A M y ) ) ) ) |
| 195 | 191 192 194 | sylancl | |- ( ( ph /\ y e. Y ) -> ( N ` ( A M y ) ) e. ran ( y e. Y |-> ( N ` ( A M y ) ) ) ) |
| 196 | 195 10 | eleqtrrdi | |- ( ( ph /\ y e. Y ) -> ( N ` ( A M y ) ) e. R ) |
| 197 | infrelb | |- ( ( R C_ RR /\ E. x e. RR A. w e. R x <_ w /\ ( N ` ( A M y ) ) e. R ) -> inf ( R , RR , < ) <_ ( N ` ( A M y ) ) ) |
|
| 198 | 189 190 196 197 | syl3anc | |- ( ( ph /\ y e. Y ) -> inf ( R , RR , < ) <_ ( N ` ( A M y ) ) ) |
| 199 | 11 198 | eqbrtrid | |- ( ( ph /\ y e. Y ) -> S <_ ( N ` ( A M y ) ) ) |
| 200 | 62 64 71 188 199 | letrd | |- ( ( ph /\ y e. Y ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( N ` ( A M y ) ) ) |
| 201 | 57 200 | eqbrtrrd | |- ( ( ph /\ y e. Y ) -> ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) |
| 202 | 201 | ralrimiva | |- ( ph -> A. y e. Y ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) |
| 203 | oveq2 | |- ( x = ( ( ~~>t ` J ) ` F ) -> ( A M x ) = ( A M ( ( ~~>t ` J ) ` F ) ) ) |
|
| 204 | 203 | fveq2d | |- ( x = ( ( ~~>t ` J ) ` F ) -> ( N ` ( A M x ) ) = ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) ) |
| 205 | 204 | breq1d | |- ( x = ( ( ~~>t ` J ) ` F ) -> ( ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) <-> ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) ) |
| 206 | 205 | ralbidv | |- ( x = ( ( ~~>t ` J ) ` F ) -> ( A. y e. Y ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) <-> A. y e. Y ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) ) |
| 207 | 206 | rspcev | |- ( ( ( ( ~~>t ` J ) ` F ) e. Y /\ A. y e. Y ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) -> E. x e. Y A. y e. Y ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) ) |
| 208 | 53 202 207 | syl2anc | |- ( ph -> E. x e. Y A. y e. Y ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) ) |