This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . The set of all distances from points of Y to A are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | ||
| minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | ||
| minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | ||
| Assertion | minvecolem1 | ⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 5 | minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | |
| 6 | minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | |
| 7 | minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 8 | minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 9 | minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 10 | minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 11 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑈 ∈ NrmCVec ) |
| 14 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
| 15 | elin | ⊢ ( 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ↔ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) | |
| 16 | 6 15 | sylib | ⊢ ( 𝜑 → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) |
| 17 | 16 | simpld | ⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| 18 | eqid | ⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) | |
| 19 | 1 4 18 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
| 20 | 12 17 19 | syl2anc | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 21 | 20 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
| 22 | 1 2 | nvmcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) |
| 23 | 13 14 21 22 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) |
| 24 | 1 3 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ ) |
| 25 | 13 23 24 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ ) |
| 26 | 25 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) : 𝑌 ⟶ ℝ ) |
| 27 | 26 | frnd | ⊢ ( 𝜑 → ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ⊆ ℝ ) |
| 28 | 10 27 | eqsstrid | ⊢ ( 𝜑 → 𝑅 ⊆ ℝ ) |
| 29 | 16 | simprd | ⊢ ( 𝜑 → 𝑊 ∈ CBan ) |
| 30 | bnnv | ⊢ ( 𝑊 ∈ CBan → 𝑊 ∈ NrmCVec ) | |
| 31 | eqid | ⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) | |
| 32 | 4 31 | nvzcl | ⊢ ( 𝑊 ∈ NrmCVec → ( 0vec ‘ 𝑊 ) ∈ 𝑌 ) |
| 33 | 29 30 32 | 3syl | ⊢ ( 𝜑 → ( 0vec ‘ 𝑊 ) ∈ 𝑌 ) |
| 34 | fvex | ⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V | |
| 35 | eqid | ⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 36 | 34 35 | dmmpti | ⊢ dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = 𝑌 |
| 37 | 33 36 | eleqtrrdi | ⊢ ( 𝜑 → ( 0vec ‘ 𝑊 ) ∈ dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 38 | 37 | ne0d | ⊢ ( 𝜑 → dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ≠ ∅ ) |
| 39 | dm0rn0 | ⊢ ( dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ∅ ↔ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ∅ ) | |
| 40 | 10 | eqeq1i | ⊢ ( 𝑅 = ∅ ↔ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ∅ ) |
| 41 | 39 40 | bitr4i | ⊢ ( dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ∅ ↔ 𝑅 = ∅ ) |
| 42 | 41 | necon3bii | ⊢ ( dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ≠ ∅ ↔ 𝑅 ≠ ∅ ) |
| 43 | 38 42 | sylib | ⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
| 44 | 1 3 | nvge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 45 | 13 23 44 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 46 | 45 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 47 | 34 | rgenw | ⊢ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V |
| 48 | breq2 | ⊢ ( 𝑤 = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) → ( 0 ≤ 𝑤 ↔ 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | |
| 49 | 35 48 | ralrnmptw | ⊢ ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0 ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 50 | 47 49 | ax-mp | ⊢ ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0 ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 51 | 46 50 | sylibr | ⊢ ( 𝜑 → ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0 ≤ 𝑤 ) |
| 52 | 10 | raleqi | ⊢ ( ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ↔ ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0 ≤ 𝑤 ) |
| 53 | 51 52 | sylibr | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
| 54 | 28 43 53 | 3jca | ⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |