This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . F is convergent in the subspace topology on Y . (Contributed by Mario Carneiro, 7-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | ||
| minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | ||
| minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | ||
| minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | ||
| minveco.f | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑌 ) | ||
| minveco.1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) | ||
| Assertion | minvecolem4a | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 5 | minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | |
| 6 | minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | |
| 7 | minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 8 | minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 9 | minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 10 | minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 11 | minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | |
| 12 | minveco.f | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑌 ) | |
| 13 | minveco.1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) | |
| 14 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 15 | 5 14 | syl | ⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
| 16 | elin | ⊢ ( 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ↔ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) | |
| 17 | 6 16 | sylib | ⊢ ( 𝜑 → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) |
| 18 | 17 | simpld | ⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| 19 | eqid | ⊢ ( IndMet ‘ 𝑊 ) = ( IndMet ‘ 𝑊 ) | |
| 20 | eqid | ⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) | |
| 21 | 4 8 19 20 | sspims | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → ( IndMet ‘ 𝑊 ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
| 22 | 15 18 21 | syl2anc | ⊢ ( 𝜑 → ( IndMet ‘ 𝑊 ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
| 23 | 17 | simprd | ⊢ ( 𝜑 → 𝑊 ∈ CBan ) |
| 24 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 25 | 24 19 | cbncms | ⊢ ( 𝑊 ∈ CBan → ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑊 ) ) ) |
| 26 | 23 25 | syl | ⊢ ( 𝜑 → ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑊 ) ) ) |
| 27 | 22 26 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑊 ) ) ) |
| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem3 | ⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) |
| 29 | 1 8 | imsmet | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 30 | 5 14 29 | 3syl | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 31 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 32 | 30 31 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 33 | causs | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) | |
| 34 | 32 12 33 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
| 35 | 28 34 | mpbid | ⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 36 | eqid | ⊢ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) | |
| 37 | 36 | cmetcau | ⊢ ( ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑊 ) ) ∧ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
| 38 | 27 35 37 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
| 39 | xmetres | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) ) | |
| 40 | 36 | methaus | ⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ Haus ) |
| 41 | 32 39 40 | 3syl | ⊢ ( 𝜑 → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ Haus ) |
| 42 | lmfun | ⊢ ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ Haus → Fun ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) | |
| 43 | funfvbrb | ⊢ ( Fun ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝐹 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) | |
| 44 | 41 42 43 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
| 45 | 38 44 | mpbid | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |