This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspba.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| sspba.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| sspba.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | ||
| Assertion | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspba.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | sspba.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | sspba.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 8 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 9 | eqid | ⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) | |
| 10 | 4 5 6 7 8 9 3 | isssp | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ NrmCVec ∧ ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ ( ·𝑠OLD ‘ 𝑊 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ ( normCV ‘ 𝑊 ) ⊆ ( normCV ‘ 𝑈 ) ) ) ) ) |
| 11 | 10 | simplbda | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ ( ·𝑠OLD ‘ 𝑊 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ ( normCV ‘ 𝑊 ) ⊆ ( normCV ‘ 𝑈 ) ) ) |
| 12 | 11 | simp1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ) |
| 13 | rnss | ⊢ ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) → ran ( +𝑣 ‘ 𝑊 ) ⊆ ran ( +𝑣 ‘ 𝑈 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ran ( +𝑣 ‘ 𝑊 ) ⊆ ran ( +𝑣 ‘ 𝑈 ) ) |
| 15 | 2 5 | bafval | ⊢ 𝑌 = ran ( +𝑣 ‘ 𝑊 ) |
| 16 | 1 4 | bafval | ⊢ 𝑋 = ran ( +𝑣 ‘ 𝑈 ) |
| 17 | 14 15 16 | 3sstr4g | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ 𝑋 ) |