This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of Kreyszig p. 59. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 27-Dec-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imsdval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| imsdval.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| imsdval.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| imsdval.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| Assertion | imsdval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsdval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | imsdval.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | imsdval.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | imsdval.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 5 | 2 3 4 | imsval | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 = ( 𝑁 ∘ 𝑀 ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐷 = ( 𝑁 ∘ 𝑀 ) ) |
| 7 | 6 | fveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( 𝑁 ∘ 𝑀 ) ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 8 | 1 2 | nvmf | ⊢ ( 𝑈 ∈ NrmCVec → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 9 | opelxpi | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) | |
| 10 | fvco3 | ⊢ ( ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝑁 ∘ 𝑀 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝑁 ‘ ( 𝑀 ‘ 〈 𝐴 , 𝐵 〉 ) ) ) | |
| 11 | 8 9 10 | syl2an | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝑁 ∘ 𝑀 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝑁 ‘ ( 𝑀 ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 12 | 11 | 3impb | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ∘ 𝑀 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝑁 ‘ ( 𝑀 ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 13 | 7 12 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝑁 ‘ ( 𝑀 ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 14 | df-ov | ⊢ ( 𝐴 𝐷 𝐵 ) = ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 15 | df-ov | ⊢ ( 𝐴 𝑀 𝐵 ) = ( 𝑀 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 16 | 15 | fveq2i | ⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) = ( 𝑁 ‘ ( 𝑀 ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 17 | 13 14 16 | 3eqtr4g | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ) |