This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007) (Proof shortened by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmle.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| lmle.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| lmle.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| lmle.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| lmle.7 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | ||
| lmle.8 | ⊢ ( 𝜑 → 𝑄 ∈ 𝑋 ) | ||
| lmle.9 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) | ||
| lmle.10 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑄 𝐷 ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) | ||
| Assertion | lmle | ⊢ ( 𝜑 → ( 𝑄 𝐷 𝑃 ) ≤ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmle.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | lmle.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | lmle.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | lmle.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | lmle.7 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | |
| 6 | lmle.8 | ⊢ ( 𝜑 → 𝑄 ∈ 𝑋 ) | |
| 7 | lmle.9 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) | |
| 8 | lmle.10 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑄 𝐷 ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) | |
| 9 | 2 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 11 | lmrel | ⊢ Rel ( ⇝𝑡 ‘ 𝐽 ) | |
| 12 | releldm | ⊢ ( ( Rel ( ⇝𝑡 ‘ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 13 | 11 5 12 | sylancr | ⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 14 | 1 10 4 13 | lmff | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) |
| 15 | eqid | ⊢ ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑗 ) | |
| 16 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → 𝑗 ∈ 𝑍 ) | |
| 18 | 17 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 19 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → 𝑗 ∈ ℤ ) |
| 21 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
| 22 | oveq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( 𝑄 𝐷 𝑥 ) = ( 𝑄 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) | |
| 23 | 22 | breq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 ↔ ( 𝑄 𝐷 ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) ) |
| 24 | fvres | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 25 | 24 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 26 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) | |
| 27 | 26 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ 𝑋 ) |
| 28 | 25 27 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 29 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 30 | 17 29 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 31 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑄 𝐷 ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) |
| 32 | 30 31 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑄 𝐷 ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) |
| 33 | 23 28 32 | elrabd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ) |
| 34 | eqid | ⊢ { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } = { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } | |
| 35 | 2 34 | blcld | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 36 | 3 6 7 35 | syl3anc | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 38 | 15 16 20 21 33 37 | lmcld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → 𝑃 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ) |
| 39 | 14 38 | rexlimddv | ⊢ ( 𝜑 → 𝑃 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ) |
| 40 | oveq2 | ⊢ ( 𝑥 = 𝑃 → ( 𝑄 𝐷 𝑥 ) = ( 𝑄 𝐷 𝑃 ) ) | |
| 41 | 40 | breq1d | ⊢ ( 𝑥 = 𝑃 → ( ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 ↔ ( 𝑄 𝐷 𝑃 ) ≤ 𝑅 ) ) |
| 42 | 41 | elrab | ⊢ ( 𝑃 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ↔ ( 𝑃 ∈ 𝑋 ∧ ( 𝑄 𝐷 𝑃 ) ≤ 𝑅 ) ) |
| 43 | 42 | simprbi | ⊢ ( 𝑃 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } → ( 𝑄 𝐷 𝑃 ) ≤ 𝑅 ) |
| 44 | 39 43 | syl | ⊢ ( 𝜑 → ( 𝑄 𝐷 𝑃 ) ≤ 𝑅 ) |