This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit on a subspace. (Contributed by NM, 30-Jan-2008) (Revised by Mario Carneiro, 30-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmss.1 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | |
| lmss.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| lmss.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lmss.4 | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | ||
| lmss.5 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑌 ) | ||
| lmss.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| lmss.7 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑌 ) | ||
| Assertion | lmss | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmss.1 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | |
| 2 | lmss.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | lmss.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 4 | lmss.4 | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | |
| 5 | lmss.5 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑌 ) | |
| 6 | lmss.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 7 | lmss.7 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑌 ) | |
| 8 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 9 | 4 8 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 10 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) | |
| 11 | 9 10 | sylan | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) |
| 12 | lmfss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ⊆ ( ℂ × ∪ 𝐽 ) ) | |
| 13 | 9 12 | sylan | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ⊆ ( ℂ × ∪ 𝐽 ) ) |
| 14 | rnss | ⊢ ( 𝐹 ⊆ ( ℂ × ∪ 𝐽 ) → ran 𝐹 ⊆ ran ( ℂ × ∪ 𝐽 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ran 𝐹 ⊆ ran ( ℂ × ∪ 𝐽 ) ) |
| 16 | rnxpss | ⊢ ran ( ℂ × ∪ 𝐽 ) ⊆ ∪ 𝐽 | |
| 17 | 15 16 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ran 𝐹 ⊆ ∪ 𝐽 ) |
| 18 | 11 17 | jca | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) |
| 19 | 18 | ex | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 → ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ) |
| 20 | resttopon2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ ( 𝑌 ∩ ∪ 𝐽 ) ) ) | |
| 21 | 9 3 20 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
| 22 | 1 21 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
| 23 | lmcl | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ( 𝑌 ∩ ∪ 𝐽 ) ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → 𝑃 ∈ ( 𝑌 ∩ ∪ 𝐽 ) ) | |
| 24 | 22 23 | sylan | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → 𝑃 ∈ ( 𝑌 ∩ ∪ 𝐽 ) ) |
| 25 | 24 | elin2d | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) |
| 26 | lmfss | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ( 𝑌 ∩ ∪ 𝐽 ) ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → 𝐹 ⊆ ( ℂ × ( 𝑌 ∩ ∪ 𝐽 ) ) ) | |
| 27 | 22 26 | sylan | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → 𝐹 ⊆ ( ℂ × ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
| 28 | rnss | ⊢ ( 𝐹 ⊆ ( ℂ × ( 𝑌 ∩ ∪ 𝐽 ) ) → ran 𝐹 ⊆ ran ( ℂ × ( 𝑌 ∩ ∪ 𝐽 ) ) ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → ran 𝐹 ⊆ ran ( ℂ × ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
| 30 | rnxpss | ⊢ ran ( ℂ × ( 𝑌 ∩ ∪ 𝐽 ) ) ⊆ ( 𝑌 ∩ ∪ 𝐽 ) | |
| 31 | 29 30 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → ran 𝐹 ⊆ ( 𝑌 ∩ ∪ 𝐽 ) ) |
| 32 | inss2 | ⊢ ( 𝑌 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 | |
| 33 | 31 32 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → ran 𝐹 ⊆ ∪ 𝐽 ) |
| 34 | 25 33 | jca | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) |
| 35 | 34 | ex | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 → ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ) |
| 36 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝑃 ∈ ∪ 𝐽 ) | |
| 37 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝑃 ∈ 𝑌 ) |
| 38 | 37 36 | elind | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝑃 ∈ ( 𝑌 ∩ ∪ 𝐽 ) ) |
| 39 | 36 38 | 2thd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝑃 ∈ ∪ 𝐽 ↔ 𝑃 ∈ ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
| 40 | 1 | eleq2i | ⊢ ( 𝑣 ∈ 𝐾 ↔ 𝑣 ∈ ( 𝐽 ↾t 𝑌 ) ) |
| 41 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐽 ∈ Top ) |
| 42 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝑌 ∈ 𝑉 ) |
| 43 | elrest | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ 𝑉 ) → ( 𝑣 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ) ) | |
| 44 | 41 42 43 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝑣 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ) ) |
| 45 | 44 | biimpa | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑣 ∈ ( 𝐽 ↾t 𝑌 ) ) → ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ) |
| 46 | 40 45 | sylan2b | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑣 ∈ 𝐾 ) → ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ) |
| 47 | r19.29r | ⊢ ( ( ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑣 = ( 𝑢 ∩ 𝑌 ) ∧ ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) | |
| 48 | 37 | biantrud | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝑃 ∈ 𝑢 ↔ ( 𝑃 ∈ 𝑢 ∧ 𝑃 ∈ 𝑌 ) ) ) |
| 49 | elin | ⊢ ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) ↔ ( 𝑃 ∈ 𝑢 ∧ 𝑃 ∈ 𝑌 ) ) | |
| 50 | 48 49 | bitr4di | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝑃 ∈ 𝑢 ↔ 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
| 51 | 2 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 52 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐹 : 𝑍 ⟶ 𝑌 ) |
| 53 | 52 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑌 ) |
| 54 | 53 | biantrud | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑌 ) ) ) |
| 55 | elin | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑌 ) ) | |
| 56 | 54 55 | bitr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
| 57 | 51 56 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
| 58 | 57 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
| 59 | 58 | ralbidva | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
| 60 | 59 | rexbidva | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
| 61 | 50 60 | imbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) |
| 62 | 61 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) |
| 63 | 62 | biimpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) |
| 64 | eleq2 | ⊢ ( 𝑣 = ( 𝑢 ∩ 𝑌 ) → ( 𝑃 ∈ 𝑣 ↔ 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) ) ) | |
| 65 | eleq2 | ⊢ ( 𝑣 = ( 𝑢 ∩ 𝑌 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) | |
| 66 | 65 | rexralbidv | ⊢ ( 𝑣 = ( 𝑢 ∩ 𝑌 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
| 67 | 64 66 | imbi12d | ⊢ ( 𝑣 = ( 𝑢 ∩ 𝑌 ) → ( ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ↔ ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) |
| 68 | 67 | imbi2d | ⊢ ( 𝑣 = ( 𝑢 ∩ 𝑌 ) → ( ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ↔ ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) ) |
| 69 | 63 68 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝑣 = ( 𝑢 ∩ 𝑌 ) → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
| 70 | 69 | impd | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝑣 = ( 𝑢 ∩ 𝑌 ) ∧ ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 71 | 70 | rexlimdva | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ∃ 𝑢 ∈ 𝐽 ( 𝑣 = ( 𝑢 ∩ 𝑌 ) ∧ ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 72 | 47 71 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ( ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 73 | 72 | expdimp | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 74 | 46 73 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑣 ∈ 𝐾 ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 75 | 74 | ralrimdva | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 76 | 41 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → 𝐽 ∈ Top ) |
| 77 | 42 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → 𝑌 ∈ 𝑉 ) |
| 78 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → 𝑢 ∈ 𝐽 ) | |
| 79 | elrestr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ 𝑉 ∧ 𝑢 ∈ 𝐽 ) → ( 𝑢 ∩ 𝑌 ) ∈ ( 𝐽 ↾t 𝑌 ) ) | |
| 80 | 76 77 78 79 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝑢 ∩ 𝑌 ) ∈ ( 𝐽 ↾t 𝑌 ) ) |
| 81 | 80 1 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝑢 ∩ 𝑌 ) ∈ 𝐾 ) |
| 82 | 67 | rspcv | ⊢ ( ( 𝑢 ∩ 𝑌 ) ∈ 𝐾 → ( ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) |
| 83 | 81 82 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) |
| 84 | 83 62 | sylibrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 85 | 84 | ralrimdva | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 86 | 75 85 | impbid | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 87 | 39 86 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ( 𝑃 ∈ ∪ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ↔ ( 𝑃 ∈ ( 𝑌 ∩ ∪ 𝐽 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
| 88 | 41 8 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 89 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝑀 ∈ ℤ ) |
| 90 | 52 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐹 Fn 𝑍 ) |
| 91 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ran 𝐹 ⊆ ∪ 𝐽 ) | |
| 92 | df-f | ⊢ ( 𝐹 : 𝑍 ⟶ ∪ 𝐽 ↔ ( 𝐹 Fn 𝑍 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) | |
| 93 | 90 91 92 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐹 : 𝑍 ⟶ ∪ 𝐽 ) |
| 94 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 95 | 88 2 89 93 94 | lmbrf | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ ∪ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
| 96 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐾 ∈ ( TopOn ‘ ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
| 97 | 52 | frnd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ran 𝐹 ⊆ 𝑌 ) |
| 98 | 97 91 | ssind | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ran 𝐹 ⊆ ( 𝑌 ∩ ∪ 𝐽 ) ) |
| 99 | df-f | ⊢ ( 𝐹 : 𝑍 ⟶ ( 𝑌 ∩ ∪ 𝐽 ) ↔ ( 𝐹 Fn 𝑍 ∧ ran 𝐹 ⊆ ( 𝑌 ∩ ∪ 𝐽 ) ) ) | |
| 100 | 90 98 99 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐹 : 𝑍 ⟶ ( 𝑌 ∩ ∪ 𝐽 ) ) |
| 101 | 96 2 89 100 94 | lmbrf | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ↔ ( 𝑃 ∈ ( 𝑌 ∩ ∪ 𝐽 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
| 102 | 87 95 101 | 3bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) ) |
| 103 | 102 | ex | ⊢ ( 𝜑 → ( ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) ) ) |
| 104 | 19 35 103 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) ) |