This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . Discharge the assumption about the sequence F by applying countable choice ax-cc . (Contributed by Mario Carneiro, 9-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | ||
| minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | ||
| minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | ||
| minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | ||
| Assertion | minvecolem5 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 5 | minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | |
| 6 | minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | |
| 7 | minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 8 | minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 9 | minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 10 | minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 11 | minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | |
| 12 | nnrecgt0 | ⊢ ( 𝑛 ∈ ℕ → 0 < ( 1 / 𝑛 ) ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 < ( 1 / 𝑛 ) ) |
| 14 | nnrecre | ⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 16 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 | ⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 18 | 17 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑅 ⊆ ℝ ) |
| 19 | 17 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑅 ≠ ∅ ) |
| 20 | 0re | ⊢ 0 ∈ ℝ | |
| 21 | 17 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
| 22 | breq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤 ) ) | |
| 23 | 22 | ralbidv | ⊢ ( 𝑥 = 0 → ( ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 24 | 23 | rspcev | ⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 25 | 20 21 24 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 26 | infrecl | ⊢ ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) | |
| 27 | 18 19 25 26 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
| 28 | 11 27 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑆 ∈ ℝ ) |
| 29 | 28 | resqcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
| 30 | 15 29 | ltaddposd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 < ( 1 / 𝑛 ) ↔ ( 𝑆 ↑ 2 ) < ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 31 | 13 30 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ↑ 2 ) < ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 32 | 29 15 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 33 | 28 | sqge0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( 𝑆 ↑ 2 ) ) |
| 34 | 29 15 33 13 | addgegt0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 < ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 35 | 32 34 | elrpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∈ ℝ+ ) |
| 36 | 35 | rpge0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 37 | resqrtth | ⊢ ( ( ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) = ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) | |
| 38 | 32 36 37 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) = ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 39 | 31 38 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ↑ 2 ) < ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) ) |
| 40 | 35 | rpsqrtcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ∈ ℝ+ ) |
| 41 | 40 | rpred | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ∈ ℝ ) |
| 42 | 0red | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ∈ ℝ ) | |
| 43 | infregelb | ⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ 0 ∈ ℝ ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) | |
| 44 | 18 19 25 42 43 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 45 | 21 44 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ inf ( 𝑅 , ℝ , < ) ) |
| 46 | 45 11 | breqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ 𝑆 ) |
| 47 | 32 36 | sqrtge0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 48 | 28 41 46 47 | lt2sqd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 < ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↔ ( 𝑆 ↑ 2 ) < ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) ) ) |
| 49 | 39 48 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑆 < ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 50 | 28 41 | ltnled | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 < ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↔ ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑆 ) ) |
| 51 | 49 50 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑆 ) |
| 52 | 11 | breq2i | ⊢ ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑆 ↔ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ inf ( 𝑅 , ℝ , < ) ) |
| 53 | infregelb | ⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ∈ ℝ ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ) ) | |
| 54 | 18 19 25 41 53 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ) ) |
| 55 | 52 54 | bitrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑆 ↔ ∀ 𝑤 ∈ 𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ) ) |
| 56 | 10 | raleqi | ⊢ ( ∀ 𝑤 ∈ 𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ↔ ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ) |
| 57 | fvex | ⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V | |
| 58 | 57 | rgenw | ⊢ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V |
| 59 | eqid | ⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 60 | breq2 | ⊢ ( 𝑤 = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ↔ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | |
| 61 | 59 60 | ralrnmptw | ⊢ ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 62 | 58 61 | ax-mp | ⊢ ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 63 | 56 62 | bitri | ⊢ ( ∀ 𝑤 ∈ 𝑅 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 64 | 55 63 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ 𝑆 ↔ ∀ 𝑦 ∈ 𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 65 | 51 64 | mtbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ¬ ∀ 𝑦 ∈ 𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 66 | rexnal | ⊢ ( ∃ 𝑦 ∈ 𝑌 ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ¬ ∀ 𝑦 ∈ 𝑌 ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 67 | 65 66 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∃ 𝑦 ∈ 𝑌 ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 68 | 32 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 69 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 70 | 5 69 | syl | ⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
| 71 | 70 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → 𝑈 ∈ NrmCVec ) |
| 72 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
| 73 | inss1 | ⊢ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ⊆ ( SubSp ‘ 𝑈 ) | |
| 74 | 73 6 | sselid | ⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| 75 | eqid | ⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) | |
| 76 | 1 4 75 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
| 77 | 70 74 76 | syl2anc | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 78 | 77 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑌 ⊆ 𝑋 ) |
| 79 | 78 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
| 80 | 1 2 | nvmcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) |
| 81 | 71 72 79 80 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) |
| 82 | 1 3 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ ) |
| 83 | 71 81 82 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ ) |
| 84 | 83 | resqcld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ∈ ℝ ) |
| 85 | 68 84 | letrid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ∨ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 86 | 85 | ord | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ¬ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 87 | 41 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ∈ ℝ ) |
| 88 | 47 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → 0 ≤ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 89 | 1 3 | nvge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 90 | 71 81 89 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 91 | 87 83 88 90 | le2sqd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) ) |
| 92 | 38 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) = ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 93 | 92 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ↑ 2 ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ↔ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) ) |
| 94 | 91 93 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) ) |
| 95 | 94 | notbid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ¬ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) ) |
| 96 | 1 2 3 8 | imsdval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 97 | 71 72 79 96 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 98 | 97 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) |
| 99 | 98 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ↔ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 100 | 86 95 99 | 3imtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) → ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 101 | 100 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑦 ∈ 𝑌 ¬ ( √ ‘ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) → ∃ 𝑦 ∈ 𝑌 ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 102 | 67 101 | mpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∃ 𝑦 ∈ 𝑌 ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 103 | 102 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑌 ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 104 | 4 | fvexi | ⊢ 𝑌 ∈ V |
| 105 | nnenom | ⊢ ℕ ≈ ω | |
| 106 | oveq2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑛 ) → ( 𝐴 𝐷 𝑦 ) = ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ) | |
| 107 | 106 | oveq1d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) = ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ) |
| 108 | 107 | breq1d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑛 ) → ( ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ↔ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 109 | 104 105 108 | axcc4 | ⊢ ( ∀ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑌 ( ( 𝐴 𝐷 𝑦 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 110 | 103 109 | syl | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) |
| 111 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) → 𝑈 ∈ CPreHilOLD ) |
| 112 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
| 113 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) → 𝐴 ∈ 𝑋 ) |
| 114 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) → 𝑓 : ℕ ⟶ 𝑌 ) | |
| 115 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) | |
| 116 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 117 | 116 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) = ( 𝐴 𝐷 ( 𝑓 ‘ 𝑘 ) ) ) |
| 118 | 117 | oveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) = ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 119 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) | |
| 120 | 119 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) = ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑘 ) ) ) |
| 121 | 118 120 | breq12d | ⊢ ( 𝑛 = 𝑘 → ( ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ↔ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑘 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑘 ) ) ) ) |
| 122 | 121 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑘 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑘 ) ) ) |
| 123 | 115 122 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑘 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑘 ) ) ) |
| 124 | eqid | ⊢ ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) = ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) | |
| 125 | 1 2 3 4 111 112 113 8 9 10 11 114 123 124 | minvecolem4 | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ 𝑌 ∧ ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝑓 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) ) → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 126 | 110 125 | exlimddv | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |