This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013) (Revised by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infrelb | ⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → inf ( 𝐵 , ℝ , < ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ⊆ ℝ ) | |
| 2 | ne0i | ⊢ ( 𝐴 ∈ 𝐵 → 𝐵 ≠ ∅ ) | |
| 3 | 2 | 3ad2ant3 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ≠ ∅ ) |
| 4 | simp2 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) | |
| 5 | infrecl | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → inf ( 𝐵 , ℝ , < ) ∈ ℝ ) | |
| 6 | 1 3 4 5 | syl3anc | ⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → inf ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 7 | ssel2 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ℝ ) |
| 9 | ltso | ⊢ < Or ℝ | |
| 10 | 9 | a1i | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → < Or ℝ ) |
| 11 | simpll | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ⊆ ℝ ) | |
| 12 | 2 | adantl | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ≠ ∅ ) |
| 13 | simplr | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) | |
| 14 | infm3 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 < 𝑦 ) ) ) | |
| 15 | 11 12 13 14 | syl3anc | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 < 𝑦 ) ) ) |
| 16 | 10 15 | inflb | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ 𝐵 → ¬ 𝐴 < inf ( 𝐵 , ℝ , < ) ) ) |
| 17 | 16 | expcom | ⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ( 𝐴 ∈ 𝐵 → ¬ 𝐴 < inf ( 𝐵 , ℝ , < ) ) ) ) |
| 18 | 17 | pm2.43b | ⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ( 𝐴 ∈ 𝐵 → ¬ 𝐴 < inf ( 𝐵 , ℝ , < ) ) ) |
| 19 | 18 | 3impia | ⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → ¬ 𝐴 < inf ( 𝐵 , ℝ , < ) ) |
| 20 | 6 8 19 | nltled | ⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → inf ( 𝐵 , ℝ , < ) ≤ 𝐴 ) |