This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for the vector subtraction operation of a normed complex vector space. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvmf.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| Assertion | nvmcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvmf.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | 1 2 | nvmf | ⊢ ( 𝑈 ∈ NrmCVec → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 4 | fovcdm | ⊢ ( ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 ) | |
| 5 | 3 4 | syl3an1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 ) |