This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 18-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frgpcyg.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| Assertion | frgpcyg | ⊢ ( 𝐼 ≼ 1o ↔ 𝐺 ∈ CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpcyg.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 2 | brdom2 | ⊢ ( 𝐼 ≼ 1o ↔ ( 𝐼 ≺ 1o ∨ 𝐼 ≈ 1o ) ) | |
| 3 | sdom1 | ⊢ ( 𝐼 ≺ 1o ↔ 𝐼 = ∅ ) | |
| 4 | fveq2 | ⊢ ( 𝐼 = ∅ → ( freeGrp ‘ 𝐼 ) = ( freeGrp ‘ ∅ ) ) | |
| 5 | 1 4 | eqtrid | ⊢ ( 𝐼 = ∅ → 𝐺 = ( freeGrp ‘ ∅ ) ) |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | eqid | ⊢ ( freeGrp ‘ ∅ ) = ( freeGrp ‘ ∅ ) | |
| 8 | 7 | frgpgrp | ⊢ ( ∅ ∈ V → ( freeGrp ‘ ∅ ) ∈ Grp ) |
| 9 | 6 8 | ax-mp | ⊢ ( freeGrp ‘ ∅ ) ∈ Grp |
| 10 | eqid | ⊢ ( Base ‘ ( freeGrp ‘ ∅ ) ) = ( Base ‘ ( freeGrp ‘ ∅ ) ) | |
| 11 | 7 10 | 0frgp | ⊢ ( Base ‘ ( freeGrp ‘ ∅ ) ) ≈ 1o |
| 12 | 10 | 0cyg | ⊢ ( ( ( freeGrp ‘ ∅ ) ∈ Grp ∧ ( Base ‘ ( freeGrp ‘ ∅ ) ) ≈ 1o ) → ( freeGrp ‘ ∅ ) ∈ CycGrp ) |
| 13 | 9 11 12 | mp2an | ⊢ ( freeGrp ‘ ∅ ) ∈ CycGrp |
| 14 | 5 13 | eqeltrdi | ⊢ ( 𝐼 = ∅ → 𝐺 ∈ CycGrp ) |
| 15 | 3 14 | sylbi | ⊢ ( 𝐼 ≺ 1o → 𝐺 ∈ CycGrp ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 17 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 18 | relen | ⊢ Rel ≈ | |
| 19 | 18 | brrelex1i | ⊢ ( 𝐼 ≈ 1o → 𝐼 ∈ V ) |
| 20 | 1 | frgpgrp | ⊢ ( 𝐼 ∈ V → 𝐺 ∈ Grp ) |
| 21 | 19 20 | syl | ⊢ ( 𝐼 ≈ 1o → 𝐺 ∈ Grp ) |
| 22 | eqid | ⊢ ( ~FG ‘ 𝐼 ) = ( ~FG ‘ 𝐼 ) | |
| 23 | eqid | ⊢ ( varFGrp ‘ 𝐼 ) = ( varFGrp ‘ 𝐼 ) | |
| 24 | 22 23 1 16 | vrgpf | ⊢ ( 𝐼 ∈ V → ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 25 | 19 24 | syl | ⊢ ( 𝐼 ≈ 1o → ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 26 | en1uniel | ⊢ ( 𝐼 ≈ 1o → ∪ 𝐼 ∈ 𝐼 ) | |
| 27 | 25 26 | ffvelcdmd | ⊢ ( 𝐼 ≈ 1o → ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ) |
| 28 | zringgrp | ⊢ ℤring ∈ Grp | |
| 29 | 19 | uniexd | ⊢ ( 𝐼 ≈ 1o → ∪ 𝐼 ∈ V ) |
| 30 | 1zzd | ⊢ ( 𝐼 ≈ 1o → 1 ∈ ℤ ) | |
| 31 | 29 30 | fsnd | ⊢ ( 𝐼 ≈ 1o → { 〈 ∪ 𝐼 , 1 〉 } : { ∪ 𝐼 } ⟶ ℤ ) |
| 32 | en1b | ⊢ ( 𝐼 ≈ 1o ↔ 𝐼 = { ∪ 𝐼 } ) | |
| 33 | 32 | biimpi | ⊢ ( 𝐼 ≈ 1o → 𝐼 = { ∪ 𝐼 } ) |
| 34 | 33 | feq2d | ⊢ ( 𝐼 ≈ 1o → ( { 〈 ∪ 𝐼 , 1 〉 } : 𝐼 ⟶ ℤ ↔ { 〈 ∪ 𝐼 , 1 〉 } : { ∪ 𝐼 } ⟶ ℤ ) ) |
| 35 | 31 34 | mpbird | ⊢ ( 𝐼 ≈ 1o → { 〈 ∪ 𝐼 , 1 〉 } : 𝐼 ⟶ ℤ ) |
| 36 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 37 | 1 36 23 | frgpup3 | ⊢ ( ( ℤring ∈ Grp ∧ 𝐼 ∈ V ∧ { 〈 ∪ 𝐼 , 1 〉 } : 𝐼 ⟶ ℤ ) → ∃! 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) = { 〈 ∪ 𝐼 , 1 〉 } ) |
| 38 | 28 19 35 37 | mp3an2i | ⊢ ( 𝐼 ≈ 1o → ∃! 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) = { 〈 ∪ 𝐼 , 1 〉 } ) |
| 39 | 38 | adantr | ⊢ ( ( 𝐼 ≈ 1o ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ∃! 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) = { 〈 ∪ 𝐼 , 1 〉 } ) |
| 40 | reurex | ⊢ ( ∃! 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) = { 〈 ∪ 𝐼 , 1 〉 } → ∃ 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) = { 〈 ∪ 𝐼 , 1 〉 } ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝐼 ≈ 1o ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ∃ 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) = { 〈 ∪ 𝐼 , 1 〉 } ) |
| 42 | fveq1 | ⊢ ( ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) = { 〈 ∪ 𝐼 , 1 〉 } → ( ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) ‘ ∪ 𝐼 ) = ( { 〈 ∪ 𝐼 , 1 〉 } ‘ ∪ 𝐼 ) ) | |
| 43 | 25 26 | fvco3d | ⊢ ( 𝐼 ≈ 1o → ( ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) ‘ ∪ 𝐼 ) = ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 44 | 1z | ⊢ 1 ∈ ℤ | |
| 45 | fvsng | ⊢ ( ( ∪ 𝐼 ∈ V ∧ 1 ∈ ℤ ) → ( { 〈 ∪ 𝐼 , 1 〉 } ‘ ∪ 𝐼 ) = 1 ) | |
| 46 | 29 44 45 | sylancl | ⊢ ( 𝐼 ≈ 1o → ( { 〈 ∪ 𝐼 , 1 〉 } ‘ ∪ 𝐼 ) = 1 ) |
| 47 | 43 46 | eqeq12d | ⊢ ( 𝐼 ≈ 1o → ( ( ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) ‘ ∪ 𝐼 ) = ( { 〈 ∪ 𝐼 , 1 〉 } ‘ ∪ 𝐼 ) ↔ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) |
| 48 | 42 47 | imbitrid | ⊢ ( 𝐼 ≈ 1o → ( ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) = { 〈 ∪ 𝐼 , 1 〉 } → ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) |
| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝐼 ≈ 1o ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ) → ( ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) = { 〈 ∪ 𝐼 , 1 〉 } → ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) |
| 50 | 16 36 | ghmf | ⊢ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) → 𝑓 : ( Base ‘ 𝐺 ) ⟶ ℤ ) |
| 51 | 50 | ad2antrl | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → 𝑓 : ( Base ‘ 𝐺 ) ⟶ ℤ ) |
| 52 | 51 | ffvelcdmda | ⊢ ( ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ℤ ) |
| 53 | 52 | an32s | ⊢ ( ( ( 𝐼 ≈ 1o ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ℤ ) |
| 54 | mptresid | ⊢ ( I ↾ ( Base ‘ 𝐺 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) | |
| 55 | 1 16 23 | frgpup3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ V ∧ ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) → ∃! 𝑔 ∈ ( 𝐺 GrpHom 𝐺 ) ( 𝑔 ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ) |
| 56 | 21 19 25 55 | syl3anc | ⊢ ( 𝐼 ≈ 1o → ∃! 𝑔 ∈ ( 𝐺 GrpHom 𝐺 ) ( 𝑔 ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ) |
| 57 | reurmo | ⊢ ( ∃! 𝑔 ∈ ( 𝐺 GrpHom 𝐺 ) ( 𝑔 ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) → ∃* 𝑔 ∈ ( 𝐺 GrpHom 𝐺 ) ( 𝑔 ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ) | |
| 58 | 56 57 | syl | ⊢ ( 𝐼 ≈ 1o → ∃* 𝑔 ∈ ( 𝐺 GrpHom 𝐺 ) ( 𝑔 ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ∃* 𝑔 ∈ ( 𝐺 GrpHom 𝐺 ) ( 𝑔 ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ) |
| 60 | 21 | adantr | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → 𝐺 ∈ Grp ) |
| 61 | 16 | idghm | ⊢ ( 𝐺 ∈ Grp → ( I ↾ ( Base ‘ 𝐺 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 62 | 60 61 | syl | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( I ↾ ( Base ‘ 𝐺 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 63 | 25 | adantr | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 64 | fcoi2 | ⊢ ( ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) → ( ( I ↾ ( Base ‘ 𝐺 ) ) ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ) | |
| 65 | 63 64 | syl | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( ( I ↾ ( Base ‘ 𝐺 ) ) ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ) |
| 66 | 51 | feqmptd | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → 𝑓 = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 67 | eqidd | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ) | |
| 68 | oveq1 | ⊢ ( 𝑛 = ( 𝑓 ‘ 𝑥 ) → ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) | |
| 69 | 52 66 67 68 | fmptco | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∘ 𝑓 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ) |
| 70 | 27 | adantr | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ) |
| 71 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) | |
| 72 | 17 71 16 | mulgghm2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∈ ( ℤring GrpHom 𝐺 ) ) |
| 73 | 60 70 72 | syl2anc | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∈ ( ℤring GrpHom 𝐺 ) ) |
| 74 | simprl | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ) | |
| 75 | ghmco | ⊢ ( ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∈ ( ℤring GrpHom 𝐺 ) ∧ 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ) → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∘ 𝑓 ) ∈ ( 𝐺 GrpHom 𝐺 ) ) | |
| 76 | 73 74 75 | syl2anc | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∘ 𝑓 ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 77 | 69 76 | eqeltrrd | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 78 | 33 | adantr | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → 𝐼 = { ∪ 𝐼 } ) |
| 79 | 78 | eleq2d | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( 𝑦 ∈ 𝐼 ↔ 𝑦 ∈ { ∪ 𝐼 } ) ) |
| 80 | simprr | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) | |
| 81 | 80 | oveq1d | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = ( 1 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 82 | 16 17 | mulg1 | ⊢ ( ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ∈ ( Base ‘ 𝐺 ) → ( 1 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) |
| 83 | 70 82 | syl | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( 1 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) |
| 84 | 81 83 | eqtrd | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) |
| 85 | elsni | ⊢ ( 𝑦 ∈ { ∪ 𝐼 } → 𝑦 = ∪ 𝐼 ) | |
| 86 | 85 | fveq2d | ⊢ ( 𝑦 ∈ { ∪ 𝐼 } → ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) = ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) |
| 87 | 86 | fveq2d | ⊢ ( 𝑦 ∈ { ∪ 𝐼 } → ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) = ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 88 | 87 | oveq1d | ⊢ ( 𝑦 ∈ { ∪ 𝐼 } → ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 89 | 88 86 | eqeq12d | ⊢ ( 𝑦 ∈ { ∪ 𝐼 } → ( ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ↔ ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 90 | 84 89 | syl5ibrcom | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( 𝑦 ∈ { ∪ 𝐼 } → ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ) |
| 91 | 79 90 | sylbid | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( 𝑦 ∈ 𝐼 → ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ) |
| 92 | 91 | imp | ⊢ ( ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) |
| 93 | 92 | mpteq2dva | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ) |
| 94 | 63 | ffvelcdmda | ⊢ ( ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 95 | 63 | feqmptd | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( varFGrp ‘ 𝐼 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ) |
| 96 | eqidd | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ) | |
| 97 | fveq2 | ⊢ ( 𝑥 = ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ) | |
| 98 | 97 | oveq1d | ⊢ ( 𝑥 = ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 99 | 94 95 96 98 | fmptco | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∘ ( varFGrp ‘ 𝐼 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ) |
| 100 | 93 99 95 | 3eqtr4d | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ) |
| 101 | coeq1 | ⊢ ( 𝑔 = ( I ↾ ( Base ‘ 𝐺 ) ) → ( 𝑔 ∘ ( varFGrp ‘ 𝐼 ) ) = ( ( I ↾ ( Base ‘ 𝐺 ) ) ∘ ( varFGrp ‘ 𝐼 ) ) ) | |
| 102 | 101 | eqeq1d | ⊢ ( 𝑔 = ( I ↾ ( Base ‘ 𝐺 ) ) → ( ( 𝑔 ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ↔ ( ( I ↾ ( Base ‘ 𝐺 ) ) ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ) ) |
| 103 | coeq1 | ⊢ ( 𝑔 = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) → ( 𝑔 ∘ ( varFGrp ‘ 𝐼 ) ) = ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∘ ( varFGrp ‘ 𝐼 ) ) ) | |
| 104 | 103 | eqeq1d | ⊢ ( 𝑔 = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) → ( ( 𝑔 ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ) ) |
| 105 | 102 104 | rmoi | ⊢ ( ( ∃* 𝑔 ∈ ( 𝐺 GrpHom 𝐺 ) ( 𝑔 ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ∧ ( ( I ↾ ( Base ‘ 𝐺 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( ( I ↾ ( Base ‘ 𝐺 ) ) ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ) ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ∘ ( varFGrp ‘ 𝐼 ) ) = ( varFGrp ‘ 𝐼 ) ) ) → ( I ↾ ( Base ‘ 𝐺 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ) |
| 106 | 59 62 65 77 100 105 | syl122anc | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( I ↾ ( Base ‘ 𝐺 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ) |
| 107 | 54 106 | eqtr3id | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ) |
| 108 | mpteqb | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑥 ∈ ( Base ‘ 𝐺 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑥 = ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ) | |
| 109 | id | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) | |
| 110 | 108 109 | mprg | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑥 = ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 111 | 107 110 | sylib | ⊢ ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑥 = ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 112 | 111 | r19.21bi | ⊢ ( ( ( 𝐼 ≈ 1o ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 = ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 113 | 112 | an32s | ⊢ ( ( ( 𝐼 ≈ 1o ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → 𝑥 = ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 114 | 68 | rspceeqv | ⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ ℤ ∧ 𝑥 = ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) → ∃ 𝑛 ∈ ℤ 𝑥 = ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 115 | 53 113 114 | syl2anc | ⊢ ( ( ( 𝐼 ≈ 1o ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ∧ ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 ) ) → ∃ 𝑛 ∈ ℤ 𝑥 = ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 116 | 115 | expr | ⊢ ( ( ( 𝐼 ≈ 1o ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ) → ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) = 1 → ∃ 𝑛 ∈ ℤ 𝑥 = ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ) |
| 117 | 49 116 | syld | ⊢ ( ( ( 𝐼 ≈ 1o ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ) → ( ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) = { 〈 ∪ 𝐼 , 1 〉 } → ∃ 𝑛 ∈ ℤ 𝑥 = ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ) |
| 118 | 117 | rexlimdva | ⊢ ( ( 𝐼 ≈ 1o ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ∃ 𝑓 ∈ ( 𝐺 GrpHom ℤring ) ( 𝑓 ∘ ( varFGrp ‘ 𝐼 ) ) = { 〈 ∪ 𝐼 , 1 〉 } → ∃ 𝑛 ∈ ℤ 𝑥 = ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) ) |
| 119 | 41 118 | mpd | ⊢ ( ( 𝐼 ≈ 1o ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ∃ 𝑛 ∈ ℤ 𝑥 = ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪ 𝐼 ) ) ) |
| 120 | 16 17 21 27 119 | iscygd | ⊢ ( 𝐼 ≈ 1o → 𝐺 ∈ CycGrp ) |
| 121 | 15 120 | jaoi | ⊢ ( ( 𝐼 ≺ 1o ∨ 𝐼 ≈ 1o ) → 𝐺 ∈ CycGrp ) |
| 122 | 2 121 | sylbi | ⊢ ( 𝐼 ≼ 1o → 𝐺 ∈ CycGrp ) |
| 123 | cygabl | ⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Abel ) | |
| 124 | 1 | frgpnabl | ⊢ ( 1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel ) |
| 125 | 124 | con2i | ⊢ ( 𝐺 ∈ Abel → ¬ 1o ≺ 𝐼 ) |
| 126 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 127 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 128 | 16 127 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 129 | 1 16 | elbasfv | ⊢ ( ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) → 𝐼 ∈ V ) |
| 130 | 126 128 129 | 3syl | ⊢ ( 𝐺 ∈ Abel → 𝐼 ∈ V ) |
| 131 | 1onn | ⊢ 1o ∈ ω | |
| 132 | nnfi | ⊢ ( 1o ∈ ω → 1o ∈ Fin ) | |
| 133 | 131 132 | ax-mp | ⊢ 1o ∈ Fin |
| 134 | fidomtri2 | ⊢ ( ( 𝐼 ∈ V ∧ 1o ∈ Fin ) → ( 𝐼 ≼ 1o ↔ ¬ 1o ≺ 𝐼 ) ) | |
| 135 | 130 133 134 | sylancl | ⊢ ( 𝐺 ∈ Abel → ( 𝐼 ≼ 1o ↔ ¬ 1o ≺ 𝐼 ) ) |
| 136 | 125 135 | mpbird | ⊢ ( 𝐺 ∈ Abel → 𝐼 ≼ 1o ) |
| 137 | 123 136 | syl | ⊢ ( 𝐺 ∈ CycGrp → 𝐼 ≼ 1o ) |
| 138 | 122 137 | impbii | ⊢ ( 𝐼 ≼ 1o ↔ 𝐺 ∈ CycGrp ) |