This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 12-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdom1 | ⊢ ( 𝐴 ≺ 1o ↔ 𝐴 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 | ⊢ 1o = { ∅ } | |
| 2 | 1 | breq2i | ⊢ ( 𝐴 ≼ 1o ↔ 𝐴 ≼ { ∅ } ) |
| 3 | brdomi | ⊢ ( 𝐴 ≼ { ∅ } → ∃ 𝑓 𝑓 : 𝐴 –1-1→ { ∅ } ) | |
| 4 | f1cdmsn | ⊢ ( ( 𝑓 : 𝐴 –1-1→ { ∅ } ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 𝐴 = { 𝑥 } ) | |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | 5 | ensn1 | ⊢ { 𝑥 } ≈ 1o |
| 7 | breq1 | ⊢ ( 𝐴 = { 𝑥 } → ( 𝐴 ≈ 1o ↔ { 𝑥 } ≈ 1o ) ) | |
| 8 | 6 7 | mpbiri | ⊢ ( 𝐴 = { 𝑥 } → 𝐴 ≈ 1o ) |
| 9 | 8 | exlimiv | ⊢ ( ∃ 𝑥 𝐴 = { 𝑥 } → 𝐴 ≈ 1o ) |
| 10 | 4 9 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1→ { ∅ } ∧ 𝐴 ≠ ∅ ) → 𝐴 ≈ 1o ) |
| 11 | 10 | expcom | ⊢ ( 𝐴 ≠ ∅ → ( 𝑓 : 𝐴 –1-1→ { ∅ } → 𝐴 ≈ 1o ) ) |
| 12 | 11 | exlimdv | ⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ { ∅ } → 𝐴 ≈ 1o ) ) |
| 13 | 3 12 | syl5 | ⊢ ( 𝐴 ≠ ∅ → ( 𝐴 ≼ { ∅ } → 𝐴 ≈ 1o ) ) |
| 14 | 2 13 | biimtrid | ⊢ ( 𝐴 ≠ ∅ → ( 𝐴 ≼ 1o → 𝐴 ≈ 1o ) ) |
| 15 | iman | ⊢ ( ( 𝐴 ≼ 1o → 𝐴 ≈ 1o ) ↔ ¬ ( 𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o ) ) | |
| 16 | 14 15 | sylib | ⊢ ( 𝐴 ≠ ∅ → ¬ ( 𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o ) ) |
| 17 | brsdom | ⊢ ( 𝐴 ≺ 1o ↔ ( 𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o ) ) | |
| 18 | 16 17 | sylnibr | ⊢ ( 𝐴 ≠ ∅ → ¬ 𝐴 ≺ 1o ) |
| 19 | 18 | necon4ai | ⊢ ( 𝐴 ≺ 1o → 𝐴 = ∅ ) |
| 20 | 1n0 | ⊢ 1o ≠ ∅ | |
| 21 | 1oex | ⊢ 1o ∈ V | |
| 22 | 21 | 0sdom | ⊢ ( ∅ ≺ 1o ↔ 1o ≠ ∅ ) |
| 23 | 20 22 | mpbir | ⊢ ∅ ≺ 1o |
| 24 | breq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ≺ 1o ↔ ∅ ≺ 1o ) ) | |
| 25 | 23 24 | mpbiri | ⊢ ( 𝐴 = ∅ → 𝐴 ≺ 1o ) |
| 26 | 19 25 | impbii | ⊢ ( 𝐴 ≺ 1o ↔ 𝐴 = ∅ ) |