This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 7-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fidomtri2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym | ⊢ ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) | |
| 2 | sdomdom | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 3 | 2 | con3i | ⊢ ( ¬ 𝐴 ≼ 𝐵 → ¬ 𝐴 ≺ 𝐵 ) |
| 4 | fidomtri | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵 ) ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ) → ( 𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵 ) ) |
| 6 | 3 5 | imbitrrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ≼ 𝐴 ) ) |
| 7 | ensym | ⊢ ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) | |
| 8 | endom | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐵 ≈ 𝐴 → 𝐴 ≼ 𝐵 ) |
| 10 | 9 | con3i | ⊢ ( ¬ 𝐴 ≼ 𝐵 → ¬ 𝐵 ≈ 𝐴 ) |
| 11 | 6 10 | jca2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ) → ( ¬ 𝐴 ≼ 𝐵 → ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) ) |
| 12 | brsdom | ⊢ ( 𝐵 ≺ 𝐴 ↔ ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) | |
| 13 | 11 12 | imbitrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ≺ 𝐴 ) ) |
| 14 | 13 | con1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ) → ( ¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵 ) ) |
| 15 | 1 14 | impbid2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |