This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a prime number P , if X and Y are members of a commutative ring R of characteristic P , then ( ( X + Y ) ^ P ) = ( ( X ^ P ) + ( Y ^ P ) ) . This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | freshmansdream.s | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| freshmansdream.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| freshmansdream.p | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) | ||
| freshmansdream.c | ⊢ 𝑃 = ( chr ‘ 𝑅 ) | ||
| freshmansdream.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| freshmansdream.1 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| freshmansdream.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| freshmansdream.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | freshmansdream | ⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑋 + 𝑌 ) ) = ( ( 𝑃 ↑ 𝑋 ) + ( 𝑃 ↑ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freshmansdream.s | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | freshmansdream.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 3 | freshmansdream.p | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 4 | freshmansdream.c | ⊢ 𝑃 = ( chr ‘ 𝑅 ) | |
| 5 | freshmansdream.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | freshmansdream.1 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 7 | freshmansdream.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | freshmansdream.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 10 | 4 | chrcl | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ ℕ0 ) |
| 11 | 5 9 10 | 3syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
| 12 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 13 | eqid | ⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) | |
| 14 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 15 | 1 12 13 2 14 3 | crngbinom | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑃 ∈ ℕ0 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑃 ↑ ( 𝑋 + 𝑌 ) ) = ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑃 ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) ) |
| 16 | 5 11 7 8 15 | syl22anc | ⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑋 + 𝑌 ) ) = ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑃 ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) ) |
| 17 | 11 | nn0cnd | ⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 18 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 19 | 17 18 | npcand | ⊢ ( 𝜑 → ( ( 𝑃 − 1 ) + 1 ) = 𝑃 ) |
| 20 | 19 | oveq2d | ⊢ ( 𝜑 → ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) = ( 0 ... 𝑃 ) ) |
| 21 | 20 | eqcomd | ⊢ ( 𝜑 → ( 0 ... 𝑃 ) = ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) |
| 22 | 21 | mpteq1d | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑃 ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) = ( 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) |
| 23 | 22 | oveq2d | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑃 ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) = ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) ) |
| 24 | ringcmn | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) | |
| 25 | 5 9 24 | 3syl | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 26 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 27 | nnm1nn0 | ⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) | |
| 28 | 6 26 27 | 3syl | ⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
| 29 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 30 | 5 9 29 | 3syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → 𝑅 ∈ Grp ) |
| 32 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → 𝑃 ∈ ℕ0 ) |
| 33 | fzssz | ⊢ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ⊆ ℤ | |
| 34 | 33 | a1i | ⊢ ( 𝜑 → ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ⊆ ℤ ) |
| 35 | 34 | sselda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → 𝑖 ∈ ℤ ) |
| 36 | bccl | ⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑖 ∈ ℤ ) → ( 𝑃 C 𝑖 ) ∈ ℕ0 ) | |
| 37 | 32 35 36 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → ( 𝑃 C 𝑖 ) ∈ ℕ0 ) |
| 38 | 37 | nn0zd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → ( 𝑃 C 𝑖 ) ∈ ℤ ) |
| 39 | 5 9 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → 𝑅 ∈ Ring ) |
| 41 | 14 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 42 | 14 | ringmgp | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 43 | 39 42 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 45 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) | |
| 46 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) = ( 0 ... 𝑃 ) ) |
| 47 | 45 46 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → 𝑖 ∈ ( 0 ... 𝑃 ) ) |
| 48 | fznn0sub | ⊢ ( 𝑖 ∈ ( 0 ... 𝑃 ) → ( 𝑃 − 𝑖 ) ∈ ℕ0 ) | |
| 49 | 47 48 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → ( 𝑃 − 𝑖 ) ∈ ℕ0 ) |
| 50 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 51 | 41 3 44 49 50 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ∈ 𝐵 ) |
| 52 | elfznn0 | ⊢ ( 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) → 𝑖 ∈ ℕ0 ) | |
| 53 | 52 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → 𝑖 ∈ ℕ0 ) |
| 54 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 55 | 41 3 44 53 54 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → ( 𝑖 ↑ 𝑌 ) ∈ 𝐵 ) |
| 56 | 1 12 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ∈ 𝐵 ∧ ( 𝑖 ↑ 𝑌 ) ∈ 𝐵 ) → ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ∈ 𝐵 ) |
| 57 | 40 51 55 56 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ∈ 𝐵 ) |
| 58 | 1 13 | mulgcl | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑃 C 𝑖 ) ∈ ℤ ∧ ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ∈ 𝐵 ) → ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ∈ 𝐵 ) |
| 59 | 31 38 57 58 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ) → ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ∈ 𝐵 ) |
| 60 | 1 2 25 28 59 | gsummptfzsplit | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) + ( 𝑅 Σg ( 𝑖 ∈ { ( ( 𝑃 − 1 ) + 1 ) } ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) ) ) |
| 61 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → 𝑅 ∈ Grp ) |
| 62 | elfzelz | ⊢ ( 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) → 𝑖 ∈ ℤ ) | |
| 63 | 11 62 36 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → ( 𝑃 C 𝑖 ) ∈ ℕ0 ) |
| 64 | 63 | nn0zd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → ( 𝑃 C 𝑖 ) ∈ ℤ ) |
| 65 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → 𝑅 ∈ Ring ) |
| 66 | 65 42 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 67 | fzssp1 | ⊢ ( 0 ... ( 𝑃 − 1 ) ) ⊆ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) | |
| 68 | 67 20 | sseqtrid | ⊢ ( 𝜑 → ( 0 ... ( 𝑃 − 1 ) ) ⊆ ( 0 ... 𝑃 ) ) |
| 69 | 68 | sselda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → 𝑖 ∈ ( 0 ... 𝑃 ) ) |
| 70 | 69 48 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → ( 𝑃 − 𝑖 ) ∈ ℕ0 ) |
| 71 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 72 | 41 3 66 70 71 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ∈ 𝐵 ) |
| 73 | elfznn0 | ⊢ ( 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) → 𝑖 ∈ ℕ0 ) | |
| 74 | 73 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → 𝑖 ∈ ℕ0 ) |
| 75 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 76 | 41 3 66 74 75 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → ( 𝑖 ↑ 𝑌 ) ∈ 𝐵 ) |
| 77 | 65 72 76 56 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ∈ 𝐵 ) |
| 78 | 61 64 77 58 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ∈ 𝐵 ) |
| 79 | 1 2 25 28 78 | gsummptfzsplitl | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) + ( 𝑅 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) ) ) |
| 80 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → 𝑅 ∈ Ring ) |
| 81 | prmdvdsbc | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → 𝑃 ∥ ( 𝑃 C 𝑖 ) ) | |
| 82 | 6 81 | sylan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → 𝑃 ∥ ( 𝑃 C 𝑖 ) ) |
| 83 | 80 42 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 84 | 11 | nn0zd | ⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 85 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 86 | eluzmn | ⊢ ( ( 𝑃 ∈ ℤ ∧ 1 ∈ ℕ0 ) → 𝑃 ∈ ( ℤ≥ ‘ ( 𝑃 − 1 ) ) ) | |
| 87 | 84 85 86 | sylancl | ⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ ( 𝑃 − 1 ) ) ) |
| 88 | fzss2 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ ( 𝑃 − 1 ) ) → ( 1 ... ( 𝑃 − 1 ) ) ⊆ ( 1 ... 𝑃 ) ) | |
| 89 | 87 88 | syl | ⊢ ( 𝜑 → ( 1 ... ( 𝑃 − 1 ) ) ⊆ ( 1 ... 𝑃 ) ) |
| 90 | 89 | sselda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → 𝑖 ∈ ( 1 ... 𝑃 ) ) |
| 91 | fznn0sub | ⊢ ( 𝑖 ∈ ( 1 ... 𝑃 ) → ( 𝑃 − 𝑖 ) ∈ ℕ0 ) | |
| 92 | 90 91 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → ( 𝑃 − 𝑖 ) ∈ ℕ0 ) |
| 93 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 94 | 41 3 83 92 93 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ∈ 𝐵 ) |
| 95 | elfznn | ⊢ ( 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) → 𝑖 ∈ ℕ ) | |
| 96 | 95 | nnnn0d | ⊢ ( 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) → 𝑖 ∈ ℕ0 ) |
| 97 | 96 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → 𝑖 ∈ ℕ0 ) |
| 98 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 99 | 41 3 83 97 98 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → ( 𝑖 ↑ 𝑌 ) ∈ 𝐵 ) |
| 100 | 80 94 99 56 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ∈ 𝐵 ) |
| 101 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 102 | 4 1 13 101 | dvdschrmulg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∥ ( 𝑃 C 𝑖 ) ∧ ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ∈ 𝐵 ) → ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 103 | 80 82 100 102 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 104 | 103 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) = ( 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↦ ( 0g ‘ 𝑅 ) ) ) |
| 105 | 104 | oveq2d | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) = ( 𝑅 Σg ( 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↦ ( 0g ‘ 𝑅 ) ) ) ) |
| 106 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 107 | 39 106 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 108 | ovex | ⊢ ( 1 ... ( 𝑃 − 1 ) ) ∈ V | |
| 109 | 101 | gsumz | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 1 ... ( 𝑃 − 1 ) ) ∈ V ) → ( 𝑅 Σg ( 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 110 | 107 108 109 | sylancl | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 111 | 105 110 | eqtrd | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 112 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 113 | 112 | a1i | ⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 114 | 41 3 43 11 7 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑋 ) ∈ 𝐵 ) |
| 115 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → 𝑖 = 0 ) | |
| 116 | 115 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( 𝑃 C 𝑖 ) = ( 𝑃 C 0 ) ) |
| 117 | 115 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( 𝑃 − 𝑖 ) = ( 𝑃 − 0 ) ) |
| 118 | 117 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) = ( ( 𝑃 − 0 ) ↑ 𝑋 ) ) |
| 119 | 115 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( 𝑖 ↑ 𝑌 ) = ( 0 ↑ 𝑌 ) ) |
| 120 | 118 119 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) = ( ( ( 𝑃 − 0 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 0 ↑ 𝑌 ) ) ) |
| 121 | 116 120 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) = ( ( 𝑃 C 0 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 0 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 0 ↑ 𝑌 ) ) ) ) |
| 122 | bcn0 | ⊢ ( 𝑃 ∈ ℕ0 → ( 𝑃 C 0 ) = 1 ) | |
| 123 | 11 122 | syl | ⊢ ( 𝜑 → ( 𝑃 C 0 ) = 1 ) |
| 124 | 17 | subid1d | ⊢ ( 𝜑 → ( 𝑃 − 0 ) = 𝑃 ) |
| 125 | 124 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑃 − 0 ) ↑ 𝑋 ) = ( 𝑃 ↑ 𝑋 ) ) |
| 126 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 127 | 14 126 | ringidval | ⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 128 | 41 127 3 | mulg0 | ⊢ ( 𝑌 ∈ 𝐵 → ( 0 ↑ 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 129 | 8 128 | syl | ⊢ ( 𝜑 → ( 0 ↑ 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 130 | 125 129 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑃 − 0 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 0 ↑ 𝑌 ) ) = ( ( 𝑃 ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 131 | 1 12 126 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑃 ↑ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑃 ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑃 ↑ 𝑋 ) ) |
| 132 | 39 114 131 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑃 ↑ 𝑋 ) ) |
| 133 | 130 132 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑃 − 0 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 0 ↑ 𝑌 ) ) = ( 𝑃 ↑ 𝑋 ) ) |
| 134 | 123 133 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑃 C 0 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 0 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 0 ↑ 𝑌 ) ) ) = ( 1 ( .g ‘ 𝑅 ) ( 𝑃 ↑ 𝑋 ) ) ) |
| 135 | 1 13 | mulg1 | ⊢ ( ( 𝑃 ↑ 𝑋 ) ∈ 𝐵 → ( 1 ( .g ‘ 𝑅 ) ( 𝑃 ↑ 𝑋 ) ) = ( 𝑃 ↑ 𝑋 ) ) |
| 136 | 114 135 | syl | ⊢ ( 𝜑 → ( 1 ( .g ‘ 𝑅 ) ( 𝑃 ↑ 𝑋 ) ) = ( 𝑃 ↑ 𝑋 ) ) |
| 137 | 134 136 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑃 C 0 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 0 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 0 ↑ 𝑌 ) ) ) = ( 𝑃 ↑ 𝑋 ) ) |
| 138 | 137 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑃 C 0 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 0 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 0 ↑ 𝑌 ) ) ) = ( 𝑃 ↑ 𝑋 ) ) |
| 139 | 121 138 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) = ( 𝑃 ↑ 𝑋 ) ) |
| 140 | 1 107 113 114 139 | gsumsnd | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) = ( 𝑃 ↑ 𝑋 ) ) |
| 141 | 111 140 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑖 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) + ( 𝑅 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) ) = ( ( 0g ‘ 𝑅 ) + ( 𝑃 ↑ 𝑋 ) ) ) |
| 142 | 1 2 101 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑃 ↑ 𝑋 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) + ( 𝑃 ↑ 𝑋 ) ) = ( 𝑃 ↑ 𝑋 ) ) |
| 143 | 30 114 142 | syl2anc | ⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) + ( 𝑃 ↑ 𝑋 ) ) = ( 𝑃 ↑ 𝑋 ) ) |
| 144 | 79 141 143 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) = ( 𝑃 ↑ 𝑋 ) ) |
| 145 | 19 11 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝑃 − 1 ) + 1 ) ∈ ℕ0 ) |
| 146 | 41 3 43 11 8 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑌 ) ∈ 𝐵 ) |
| 147 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 = ( ( 𝑃 − 1 ) + 1 ) ) → 𝑖 = ( ( 𝑃 − 1 ) + 1 ) ) | |
| 148 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 = ( ( 𝑃 − 1 ) + 1 ) ) → ( ( 𝑃 − 1 ) + 1 ) = 𝑃 ) |
| 149 | 147 148 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑖 = ( ( 𝑃 − 1 ) + 1 ) ) → 𝑖 = 𝑃 ) |
| 150 | 149 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 = ( ( 𝑃 − 1 ) + 1 ) ) → ( 𝑃 C 𝑖 ) = ( 𝑃 C 𝑃 ) ) |
| 151 | 149 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 = ( ( 𝑃 − 1 ) + 1 ) ) → ( 𝑃 − 𝑖 ) = ( 𝑃 − 𝑃 ) ) |
| 152 | 151 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑖 = ( ( 𝑃 − 1 ) + 1 ) ) → ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) = ( ( 𝑃 − 𝑃 ) ↑ 𝑋 ) ) |
| 153 | 149 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑖 = ( ( 𝑃 − 1 ) + 1 ) ) → ( 𝑖 ↑ 𝑌 ) = ( 𝑃 ↑ 𝑌 ) ) |
| 154 | 152 153 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑖 = ( ( 𝑃 − 1 ) + 1 ) ) → ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) = ( ( ( 𝑃 − 𝑃 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) ) |
| 155 | 150 154 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑖 = ( ( 𝑃 − 1 ) + 1 ) ) → ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) = ( ( 𝑃 C 𝑃 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑃 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) ) ) |
| 156 | bcnn | ⊢ ( 𝑃 ∈ ℕ0 → ( 𝑃 C 𝑃 ) = 1 ) | |
| 157 | 11 156 | syl | ⊢ ( 𝜑 → ( 𝑃 C 𝑃 ) = 1 ) |
| 158 | 17 | subidd | ⊢ ( 𝜑 → ( 𝑃 − 𝑃 ) = 0 ) |
| 159 | 158 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑃 − 𝑃 ) ↑ 𝑋 ) = ( 0 ↑ 𝑋 ) ) |
| 160 | 41 127 3 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 161 | 7 160 | syl | ⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 162 | 159 161 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑃 − 𝑃 ) ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 163 | 162 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑃 − 𝑃 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) ) |
| 164 | 1 12 126 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑃 ↑ 𝑌 ) ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) = ( 𝑃 ↑ 𝑌 ) ) |
| 165 | 39 146 164 | syl2anc | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) = ( 𝑃 ↑ 𝑌 ) ) |
| 166 | 163 165 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑃 − 𝑃 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) = ( 𝑃 ↑ 𝑌 ) ) |
| 167 | 157 166 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑃 C 𝑃 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑃 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) ) = ( 1 ( .g ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) ) |
| 168 | 1 13 | mulg1 | ⊢ ( ( 𝑃 ↑ 𝑌 ) ∈ 𝐵 → ( 1 ( .g ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) = ( 𝑃 ↑ 𝑌 ) ) |
| 169 | 146 168 | syl | ⊢ ( 𝜑 → ( 1 ( .g ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) = ( 𝑃 ↑ 𝑌 ) ) |
| 170 | 167 169 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑃 C 𝑃 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑃 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) ) = ( 𝑃 ↑ 𝑌 ) ) |
| 171 | 170 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 = ( ( 𝑃 − 1 ) + 1 ) ) → ( ( 𝑃 C 𝑃 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑃 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑌 ) ) ) = ( 𝑃 ↑ 𝑌 ) ) |
| 172 | 155 171 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑖 = ( ( 𝑃 − 1 ) + 1 ) ) → ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) = ( 𝑃 ↑ 𝑌 ) ) |
| 173 | 1 107 145 146 172 | gsumsnd | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ { ( ( 𝑃 − 1 ) + 1 ) } ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) = ( 𝑃 ↑ 𝑌 ) ) |
| 174 | 144 173 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... ( 𝑃 − 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) + ( 𝑅 Σg ( 𝑖 ∈ { ( ( 𝑃 − 1 ) + 1 ) } ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) ) = ( ( 𝑃 ↑ 𝑋 ) + ( 𝑃 ↑ 𝑌 ) ) ) |
| 175 | 60 174 | eqtrd | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... ( ( 𝑃 − 1 ) + 1 ) ) ↦ ( ( 𝑃 C 𝑖 ) ( .g ‘ 𝑅 ) ( ( ( 𝑃 − 𝑖 ) ↑ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑖 ↑ 𝑌 ) ) ) ) ) = ( ( 𝑃 ↑ 𝑋 ) + ( 𝑃 ↑ 𝑌 ) ) ) |
| 176 | 16 23 175 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑋 + 𝑌 ) ) = ( ( 𝑃 ↑ 𝑋 ) + ( 𝑃 ↑ 𝑌 ) ) ) |