This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping from the index set to the generators is a function into the free group. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vrgpfval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| vrgpfval.u | ⊢ 𝑈 = ( varFGrp ‘ 𝐼 ) | ||
| vrgpf.m | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | ||
| vrgpf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| Assertion | vrgpf | ⊢ ( 𝐼 ∈ 𝑉 → 𝑈 : 𝐼 ⟶ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vrgpfval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 2 | vrgpfval.u | ⊢ 𝑈 = ( varFGrp ‘ 𝐼 ) | |
| 3 | vrgpf.m | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 4 | vrgpf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 5 | 1 2 | vrgpfval | ⊢ ( 𝐼 ∈ 𝑉 → 𝑈 = ( 𝑗 ∈ 𝐼 ↦ [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ∼ ) ) |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | 6 | prid1 | ⊢ ∅ ∈ { ∅ , 1o } |
| 8 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 9 | 7 8 | eleqtrri | ⊢ ∅ ∈ 2o |
| 10 | opelxpi | ⊢ ( ( 𝑗 ∈ 𝐼 ∧ ∅ ∈ 2o ) → 〈 𝑗 , ∅ 〉 ∈ ( 𝐼 × 2o ) ) | |
| 11 | 9 10 | mpan2 | ⊢ ( 𝑗 ∈ 𝐼 → 〈 𝑗 , ∅ 〉 ∈ ( 𝐼 × 2o ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼 ) → 〈 𝑗 , ∅ 〉 ∈ ( 𝐼 × 2o ) ) |
| 13 | 12 | s1cld | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼 ) → 〈“ 〈 𝑗 , ∅ 〉 ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 14 | 2on | ⊢ 2o ∈ On | |
| 15 | xpexg | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) | |
| 16 | 14 15 | mpan2 | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × 2o ) ∈ V ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼 ) → ( 𝐼 × 2o ) ∈ V ) |
| 18 | wrdexg | ⊢ ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V ) | |
| 19 | fvi | ⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) | |
| 20 | 17 18 19 | 3syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼 ) → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
| 21 | 13 20 | eleqtrrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼 ) → 〈“ 〈 𝑗 , ∅ 〉 ”〉 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) |
| 22 | eqid | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 23 | 3 1 22 4 | frgpeccl | ⊢ ( 〈“ 〈 𝑗 , ∅ 〉 ”〉 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) → [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ∼ ∈ 𝑋 ) |
| 24 | 21 23 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑗 ∈ 𝐼 ) → [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ∼ ∈ 𝑋 ) |
| 25 | 5 24 | fmpt3d | ⊢ ( 𝐼 ∈ 𝑉 → 𝑈 : 𝐼 ⟶ 𝑋 ) |