This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpup3.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| frgpup3.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | ||
| frgpup3.u | ⊢ 𝑈 = ( varFGrp ‘ 𝐼 ) | ||
| Assertion | frgpup3 | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ∃! 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ( 𝑚 ∘ 𝑈 ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup3.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 2 | frgpup3.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 3 | frgpup3.u | ⊢ 𝑈 = ( varFGrp ‘ 𝐼 ) | |
| 4 | eqid | ⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) | |
| 5 | eqid | ⊢ ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 6 | simp1 | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝐻 ∈ Grp ) | |
| 7 | simp2 | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝐼 ∈ 𝑉 ) | |
| 8 | simp3 | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝐹 : 𝐼 ⟶ 𝐵 ) | |
| 9 | eqid | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 10 | eqid | ⊢ ( ~FG ‘ 𝐼 ) = ( ~FG ‘ 𝐼 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 12 | eqid | ⊢ ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) = ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) | |
| 13 | 2 4 5 6 7 8 9 10 1 11 12 | frgpup1 | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 14 | 6 | adantr | ⊢ ( ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑘 ∈ 𝐼 ) → 𝐻 ∈ Grp ) |
| 15 | 7 | adantr | ⊢ ( ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑘 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) |
| 16 | 8 | adantr | ⊢ ( ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑘 ∈ 𝐼 ) → 𝐹 : 𝐼 ⟶ 𝐵 ) |
| 17 | simpr | ⊢ ( ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑘 ∈ 𝐼 ) → 𝑘 ∈ 𝐼 ) | |
| 18 | 2 4 5 14 15 16 9 10 1 11 12 3 17 | frgpup2 | ⊢ ( ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑘 ∈ 𝐼 ) → ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ‘ ( 𝑈 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 19 | 18 | mpteq2dva | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝑘 ∈ 𝐼 ↦ ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ‘ ( 𝑈 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 20 | 11 2 | ghmf | ⊢ ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ∈ ( 𝐺 GrpHom 𝐻 ) → ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) : ( Base ‘ 𝐺 ) ⟶ 𝐵 ) |
| 21 | 13 20 | syl | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) : ( Base ‘ 𝐺 ) ⟶ 𝐵 ) |
| 22 | 10 3 1 11 | vrgpf | ⊢ ( 𝐼 ∈ 𝑉 → 𝑈 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 23 | 7 22 | syl | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝑈 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 24 | fcompt | ⊢ ( ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) : ( Base ‘ 𝐺 ) ⟶ 𝐵 ∧ 𝑈 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) → ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ∘ 𝑈 ) = ( 𝑘 ∈ 𝐼 ↦ ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ‘ ( 𝑈 ‘ 𝑘 ) ) ) ) | |
| 25 | 21 23 24 | syl2anc | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ∘ 𝑈 ) = ( 𝑘 ∈ 𝐼 ↦ ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ‘ ( 𝑈 ‘ 𝑘 ) ) ) ) |
| 26 | 8 | feqmptd | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝐹 = ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 27 | 19 25 26 | 3eqtr4d | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ∘ 𝑈 ) = 𝐹 ) |
| 28 | 6 | adantr | ⊢ ( ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( 𝑚 ∘ 𝑈 ) = 𝐹 ) ) → 𝐻 ∈ Grp ) |
| 29 | 7 | adantr | ⊢ ( ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( 𝑚 ∘ 𝑈 ) = 𝐹 ) ) → 𝐼 ∈ 𝑉 ) |
| 30 | 8 | adantr | ⊢ ( ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( 𝑚 ∘ 𝑈 ) = 𝐹 ) ) → 𝐹 : 𝐼 ⟶ 𝐵 ) |
| 31 | simprl | ⊢ ( ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( 𝑚 ∘ 𝑈 ) = 𝐹 ) ) → 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 32 | simprr | ⊢ ( ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( 𝑚 ∘ 𝑈 ) = 𝐹 ) ) → ( 𝑚 ∘ 𝑈 ) = 𝐹 ) | |
| 33 | 2 4 5 28 29 30 9 10 1 11 12 3 31 32 | frgpup3lem | ⊢ ( ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( 𝑚 ∘ 𝑈 ) = 𝐹 ) ) → 𝑚 = ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ) |
| 34 | 33 | expr | ⊢ ( ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ) → ( ( 𝑚 ∘ 𝑈 ) = 𝐹 → 𝑚 = ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ) ) |
| 35 | 34 | ralrimiva | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ∀ 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ( ( 𝑚 ∘ 𝑈 ) = 𝐹 → 𝑚 = ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ) ) |
| 36 | coeq1 | ⊢ ( 𝑚 = ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) → ( 𝑚 ∘ 𝑈 ) = ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ∘ 𝑈 ) ) | |
| 37 | 36 | eqeq1d | ⊢ ( 𝑚 = ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) → ( ( 𝑚 ∘ 𝑈 ) = 𝐹 ↔ ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ∘ 𝑈 ) = 𝐹 ) ) |
| 38 | 37 | eqreu | ⊢ ( ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ∘ 𝑈 ) = 𝐹 ∧ ∀ 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ( ( 𝑚 ∘ 𝑈 ) = 𝐹 → 𝑚 = ran ( 𝑔 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ 〈 [ 𝑔 ] ( ~FG ‘ 𝐼 ) , ( 𝐻 Σg ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ∘ 𝑔 ) ) 〉 ) ) ) → ∃! 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ( 𝑚 ∘ 𝑈 ) = 𝐹 ) |
| 39 | 13 27 35 38 | syl3anc | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ∃! 𝑚 ∈ ( 𝐺 GrpHom 𝐻 ) ( 𝑚 ∘ 𝑈 ) = 𝐹 ) |