This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idghm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | idghm | ⊢ ( 𝐺 ∈ Grp → ( I ↾ 𝐵 ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idghm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | id | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐵 ) |
| 5 | 4 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐵 ) |
| 6 | fvresi | ⊢ ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) |
| 8 | fvresi | ⊢ ( 𝑎 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑎 ) = 𝑎 ) | |
| 9 | fvresi | ⊢ ( 𝑏 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑏 ) = 𝑏 ) | |
| 10 | 8 9 | oveqan12d | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) |
| 12 | 7 11 | eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) |
| 13 | 12 | ralrimivva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) |
| 14 | f1oi | ⊢ ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 | |
| 15 | f1of | ⊢ ( ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 → ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ) | |
| 16 | 14 15 | ax-mp | ⊢ ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 |
| 17 | 13 16 | jctil | ⊢ ( 𝐺 ∈ Grp → ( ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) ) |
| 18 | 1 1 3 3 | isghm | ⊢ ( ( I ↾ 𝐵 ) ∈ ( 𝐺 GrpHom 𝐺 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ Grp ) ∧ ( ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) ) ) |
| 19 | 2 2 17 18 | syl21anbrc | ⊢ ( 𝐺 ∈ Grp → ( I ↾ 𝐵 ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |