This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| iscygd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| iscygd.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| iscygd.5 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) | ||
| Assertion | iscygd | ⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | iscygd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | iscygd.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | iscygd.5 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) | |
| 6 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) |
| 7 | eqid | ⊢ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | |
| 8 | 1 2 7 | iscyggen2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) ) ) |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → ( 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) ) ) |
| 10 | 4 6 9 | mpbir2and | ⊢ ( 𝜑 → 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } ) |
| 11 | 10 | ne0d | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } ≠ ∅ ) |
| 12 | 1 2 7 | iscyg2 | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } ≠ ∅ ) ) |
| 13 | 3 11 12 | sylanbrc | ⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |