This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 18-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frgpcyg.g | |- G = ( freeGrp ` I ) |
|
| Assertion | frgpcyg | |- ( I ~<_ 1o <-> G e. CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpcyg.g | |- G = ( freeGrp ` I ) |
|
| 2 | brdom2 | |- ( I ~<_ 1o <-> ( I ~< 1o \/ I ~~ 1o ) ) |
|
| 3 | sdom1 | |- ( I ~< 1o <-> I = (/) ) |
|
| 4 | fveq2 | |- ( I = (/) -> ( freeGrp ` I ) = ( freeGrp ` (/) ) ) |
|
| 5 | 1 4 | eqtrid | |- ( I = (/) -> G = ( freeGrp ` (/) ) ) |
| 6 | 0ex | |- (/) e. _V |
|
| 7 | eqid | |- ( freeGrp ` (/) ) = ( freeGrp ` (/) ) |
|
| 8 | 7 | frgpgrp | |- ( (/) e. _V -> ( freeGrp ` (/) ) e. Grp ) |
| 9 | 6 8 | ax-mp | |- ( freeGrp ` (/) ) e. Grp |
| 10 | eqid | |- ( Base ` ( freeGrp ` (/) ) ) = ( Base ` ( freeGrp ` (/) ) ) |
|
| 11 | 7 10 | 0frgp | |- ( Base ` ( freeGrp ` (/) ) ) ~~ 1o |
| 12 | 10 | 0cyg | |- ( ( ( freeGrp ` (/) ) e. Grp /\ ( Base ` ( freeGrp ` (/) ) ) ~~ 1o ) -> ( freeGrp ` (/) ) e. CycGrp ) |
| 13 | 9 11 12 | mp2an | |- ( freeGrp ` (/) ) e. CycGrp |
| 14 | 5 13 | eqeltrdi | |- ( I = (/) -> G e. CycGrp ) |
| 15 | 3 14 | sylbi | |- ( I ~< 1o -> G e. CycGrp ) |
| 16 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 17 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 18 | relen | |- Rel ~~ |
|
| 19 | 18 | brrelex1i | |- ( I ~~ 1o -> I e. _V ) |
| 20 | 1 | frgpgrp | |- ( I e. _V -> G e. Grp ) |
| 21 | 19 20 | syl | |- ( I ~~ 1o -> G e. Grp ) |
| 22 | eqid | |- ( ~FG ` I ) = ( ~FG ` I ) |
|
| 23 | eqid | |- ( varFGrp ` I ) = ( varFGrp ` I ) |
|
| 24 | 22 23 1 16 | vrgpf | |- ( I e. _V -> ( varFGrp ` I ) : I --> ( Base ` G ) ) |
| 25 | 19 24 | syl | |- ( I ~~ 1o -> ( varFGrp ` I ) : I --> ( Base ` G ) ) |
| 26 | en1uniel | |- ( I ~~ 1o -> U. I e. I ) |
|
| 27 | 25 26 | ffvelcdmd | |- ( I ~~ 1o -> ( ( varFGrp ` I ) ` U. I ) e. ( Base ` G ) ) |
| 28 | zringgrp | |- ZZring e. Grp |
|
| 29 | 19 | uniexd | |- ( I ~~ 1o -> U. I e. _V ) |
| 30 | 1zzd | |- ( I ~~ 1o -> 1 e. ZZ ) |
|
| 31 | 29 30 | fsnd | |- ( I ~~ 1o -> { <. U. I , 1 >. } : { U. I } --> ZZ ) |
| 32 | en1b | |- ( I ~~ 1o <-> I = { U. I } ) |
|
| 33 | 32 | biimpi | |- ( I ~~ 1o -> I = { U. I } ) |
| 34 | 33 | feq2d | |- ( I ~~ 1o -> ( { <. U. I , 1 >. } : I --> ZZ <-> { <. U. I , 1 >. } : { U. I } --> ZZ ) ) |
| 35 | 31 34 | mpbird | |- ( I ~~ 1o -> { <. U. I , 1 >. } : I --> ZZ ) |
| 36 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 37 | 1 36 23 | frgpup3 | |- ( ( ZZring e. Grp /\ I e. _V /\ { <. U. I , 1 >. } : I --> ZZ ) -> E! f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } ) |
| 38 | 28 19 35 37 | mp3an2i | |- ( I ~~ 1o -> E! f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } ) |
| 39 | 38 | adantr | |- ( ( I ~~ 1o /\ x e. ( Base ` G ) ) -> E! f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } ) |
| 40 | reurex | |- ( E! f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } -> E. f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } ) |
|
| 41 | 39 40 | syl | |- ( ( I ~~ 1o /\ x e. ( Base ` G ) ) -> E. f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } ) |
| 42 | fveq1 | |- ( ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } -> ( ( f o. ( varFGrp ` I ) ) ` U. I ) = ( { <. U. I , 1 >. } ` U. I ) ) |
|
| 43 | 25 26 | fvco3d | |- ( I ~~ 1o -> ( ( f o. ( varFGrp ` I ) ) ` U. I ) = ( f ` ( ( varFGrp ` I ) ` U. I ) ) ) |
| 44 | 1z | |- 1 e. ZZ |
|
| 45 | fvsng | |- ( ( U. I e. _V /\ 1 e. ZZ ) -> ( { <. U. I , 1 >. } ` U. I ) = 1 ) |
|
| 46 | 29 44 45 | sylancl | |- ( I ~~ 1o -> ( { <. U. I , 1 >. } ` U. I ) = 1 ) |
| 47 | 43 46 | eqeq12d | |- ( I ~~ 1o -> ( ( ( f o. ( varFGrp ` I ) ) ` U. I ) = ( { <. U. I , 1 >. } ` U. I ) <-> ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) |
| 48 | 42 47 | imbitrid | |- ( I ~~ 1o -> ( ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } -> ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) |
| 49 | 48 | ad2antrr | |- ( ( ( I ~~ 1o /\ x e. ( Base ` G ) ) /\ f e. ( G GrpHom ZZring ) ) -> ( ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } -> ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) |
| 50 | 16 36 | ghmf | |- ( f e. ( G GrpHom ZZring ) -> f : ( Base ` G ) --> ZZ ) |
| 51 | 50 | ad2antrl | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> f : ( Base ` G ) --> ZZ ) |
| 52 | 51 | ffvelcdmda | |- ( ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) /\ x e. ( Base ` G ) ) -> ( f ` x ) e. ZZ ) |
| 53 | 52 | an32s | |- ( ( ( I ~~ 1o /\ x e. ( Base ` G ) ) /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( f ` x ) e. ZZ ) |
| 54 | mptresid | |- ( _I |` ( Base ` G ) ) = ( x e. ( Base ` G ) |-> x ) |
|
| 55 | 1 16 23 | frgpup3 | |- ( ( G e. Grp /\ I e. _V /\ ( varFGrp ` I ) : I --> ( Base ` G ) ) -> E! g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
| 56 | 21 19 25 55 | syl3anc | |- ( I ~~ 1o -> E! g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
| 57 | reurmo | |- ( E! g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) -> E* g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
|
| 58 | 56 57 | syl | |- ( I ~~ 1o -> E* g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
| 59 | 58 | adantr | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> E* g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
| 60 | 21 | adantr | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> G e. Grp ) |
| 61 | 16 | idghm | |- ( G e. Grp -> ( _I |` ( Base ` G ) ) e. ( G GrpHom G ) ) |
| 62 | 60 61 | syl | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( _I |` ( Base ` G ) ) e. ( G GrpHom G ) ) |
| 63 | 25 | adantr | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( varFGrp ` I ) : I --> ( Base ` G ) ) |
| 64 | fcoi2 | |- ( ( varFGrp ` I ) : I --> ( Base ` G ) -> ( ( _I |` ( Base ` G ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
|
| 65 | 63 64 | syl | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( _I |` ( Base ` G ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
| 66 | 51 | feqmptd | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> f = ( x e. ( Base ` G ) |-> ( f ` x ) ) ) |
| 67 | eqidd | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) = ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
|
| 68 | oveq1 | |- ( n = ( f ` x ) -> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
|
| 69 | 52 66 67 68 | fmptco | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. f ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
| 70 | 27 | adantr | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( varFGrp ` I ) ` U. I ) e. ( Base ` G ) ) |
| 71 | eqid | |- ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) = ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
|
| 72 | 17 71 16 | mulgghm2 | |- ( ( G e. Grp /\ ( ( varFGrp ` I ) ` U. I ) e. ( Base ` G ) ) -> ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) e. ( ZZring GrpHom G ) ) |
| 73 | 60 70 72 | syl2anc | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) e. ( ZZring GrpHom G ) ) |
| 74 | simprl | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> f e. ( G GrpHom ZZring ) ) |
|
| 75 | ghmco | |- ( ( ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) e. ( ZZring GrpHom G ) /\ f e. ( G GrpHom ZZring ) ) -> ( ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. f ) e. ( G GrpHom G ) ) |
|
| 76 | 73 74 75 | syl2anc | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. f ) e. ( G GrpHom G ) ) |
| 77 | 69 76 | eqeltrrd | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) e. ( G GrpHom G ) ) |
| 78 | 33 | adantr | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> I = { U. I } ) |
| 79 | 78 | eleq2d | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( y e. I <-> y e. { U. I } ) ) |
| 80 | simprr | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) |
|
| 81 | 80 | oveq1d | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( f ` ( ( varFGrp ` I ) ` U. I ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( 1 ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
| 82 | 16 17 | mulg1 | |- ( ( ( varFGrp ` I ) ` U. I ) e. ( Base ` G ) -> ( 1 ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` U. I ) ) |
| 83 | 70 82 | syl | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( 1 ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` U. I ) ) |
| 84 | 81 83 | eqtrd | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( f ` ( ( varFGrp ` I ) ` U. I ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` U. I ) ) |
| 85 | elsni | |- ( y e. { U. I } -> y = U. I ) |
|
| 86 | 85 | fveq2d | |- ( y e. { U. I } -> ( ( varFGrp ` I ) ` y ) = ( ( varFGrp ` I ) ` U. I ) ) |
| 87 | 86 | fveq2d | |- ( y e. { U. I } -> ( f ` ( ( varFGrp ` I ) ` y ) ) = ( f ` ( ( varFGrp ` I ) ` U. I ) ) ) |
| 88 | 87 | oveq1d | |- ( y e. { U. I } -> ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( f ` ( ( varFGrp ` I ) ` U. I ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
| 89 | 88 86 | eqeq12d | |- ( y e. { U. I } -> ( ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` y ) <-> ( ( f ` ( ( varFGrp ` I ) ` U. I ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` U. I ) ) ) |
| 90 | 84 89 | syl5ibrcom | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( y e. { U. I } -> ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` y ) ) ) |
| 91 | 79 90 | sylbid | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( y e. I -> ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` y ) ) ) |
| 92 | 91 | imp | |- ( ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) /\ y e. I ) -> ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` y ) ) |
| 93 | 92 | mpteq2dva | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( y e. I |-> ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) = ( y e. I |-> ( ( varFGrp ` I ) ` y ) ) ) |
| 94 | 63 | ffvelcdmda | |- ( ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) /\ y e. I ) -> ( ( varFGrp ` I ) ` y ) e. ( Base ` G ) ) |
| 95 | 63 | feqmptd | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( varFGrp ` I ) = ( y e. I |-> ( ( varFGrp ` I ) ` y ) ) ) |
| 96 | eqidd | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
|
| 97 | fveq2 | |- ( x = ( ( varFGrp ` I ) ` y ) -> ( f ` x ) = ( f ` ( ( varFGrp ` I ) ` y ) ) ) |
|
| 98 | 97 | oveq1d | |- ( x = ( ( varFGrp ` I ) ` y ) -> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
| 99 | 94 95 96 98 | fmptco | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. ( varFGrp ` I ) ) = ( y e. I |-> ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
| 100 | 93 99 95 | 3eqtr4d | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
| 101 | coeq1 | |- ( g = ( _I |` ( Base ` G ) ) -> ( g o. ( varFGrp ` I ) ) = ( ( _I |` ( Base ` G ) ) o. ( varFGrp ` I ) ) ) |
|
| 102 | 101 | eqeq1d | |- ( g = ( _I |` ( Base ` G ) ) -> ( ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) <-> ( ( _I |` ( Base ` G ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) ) |
| 103 | coeq1 | |- ( g = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) -> ( g o. ( varFGrp ` I ) ) = ( ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. ( varFGrp ` I ) ) ) |
|
| 104 | 103 | eqeq1d | |- ( g = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) -> ( ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) <-> ( ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) ) |
| 105 | 102 104 | rmoi | |- ( ( E* g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) /\ ( ( _I |` ( Base ` G ) ) e. ( G GrpHom G ) /\ ( ( _I |` ( Base ` G ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) /\ ( ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) e. ( G GrpHom G ) /\ ( ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) ) -> ( _I |` ( Base ` G ) ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
| 106 | 59 62 65 77 100 105 | syl122anc | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( _I |` ( Base ` G ) ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
| 107 | 54 106 | eqtr3id | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( x e. ( Base ` G ) |-> x ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
| 108 | mpteqb | |- ( A. x e. ( Base ` G ) x e. ( Base ` G ) -> ( ( x e. ( Base ` G ) |-> x ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) <-> A. x e. ( Base ` G ) x = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
|
| 109 | id | |- ( x e. ( Base ` G ) -> x e. ( Base ` G ) ) |
|
| 110 | 108 109 | mprg | |- ( ( x e. ( Base ` G ) |-> x ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) <-> A. x e. ( Base ` G ) x = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
| 111 | 107 110 | sylib | |- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> A. x e. ( Base ` G ) x = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
| 112 | 111 | r19.21bi | |- ( ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) /\ x e. ( Base ` G ) ) -> x = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
| 113 | 112 | an32s | |- ( ( ( I ~~ 1o /\ x e. ( Base ` G ) ) /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> x = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
| 114 | 68 | rspceeqv | |- ( ( ( f ` x ) e. ZZ /\ x = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) -> E. n e. ZZ x = ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
| 115 | 53 113 114 | syl2anc | |- ( ( ( I ~~ 1o /\ x e. ( Base ` G ) ) /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> E. n e. ZZ x = ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
| 116 | 115 | expr | |- ( ( ( I ~~ 1o /\ x e. ( Base ` G ) ) /\ f e. ( G GrpHom ZZring ) ) -> ( ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 -> E. n e. ZZ x = ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
| 117 | 49 116 | syld | |- ( ( ( I ~~ 1o /\ x e. ( Base ` G ) ) /\ f e. ( G GrpHom ZZring ) ) -> ( ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } -> E. n e. ZZ x = ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
| 118 | 117 | rexlimdva | |- ( ( I ~~ 1o /\ x e. ( Base ` G ) ) -> ( E. f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } -> E. n e. ZZ x = ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
| 119 | 41 118 | mpd | |- ( ( I ~~ 1o /\ x e. ( Base ` G ) ) -> E. n e. ZZ x = ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
| 120 | 16 17 21 27 119 | iscygd | |- ( I ~~ 1o -> G e. CycGrp ) |
| 121 | 15 120 | jaoi | |- ( ( I ~< 1o \/ I ~~ 1o ) -> G e. CycGrp ) |
| 122 | 2 121 | sylbi | |- ( I ~<_ 1o -> G e. CycGrp ) |
| 123 | cygabl | |- ( G e. CycGrp -> G e. Abel ) |
|
| 124 | 1 | frgpnabl | |- ( 1o ~< I -> -. G e. Abel ) |
| 125 | 124 | con2i | |- ( G e. Abel -> -. 1o ~< I ) |
| 126 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 127 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 128 | 16 127 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 129 | 1 16 | elbasfv | |- ( ( 0g ` G ) e. ( Base ` G ) -> I e. _V ) |
| 130 | 126 128 129 | 3syl | |- ( G e. Abel -> I e. _V ) |
| 131 | 1onn | |- 1o e. _om |
|
| 132 | nnfi | |- ( 1o e. _om -> 1o e. Fin ) |
|
| 133 | 131 132 | ax-mp | |- 1o e. Fin |
| 134 | fidomtri2 | |- ( ( I e. _V /\ 1o e. Fin ) -> ( I ~<_ 1o <-> -. 1o ~< I ) ) |
|
| 135 | 130 133 134 | sylancl | |- ( G e. Abel -> ( I ~<_ 1o <-> -. 1o ~< I ) ) |
| 136 | 125 135 | mpbird | |- ( G e. Abel -> I ~<_ 1o ) |
| 137 | 123 136 | syl | |- ( G e. CycGrp -> I ~<_ 1o ) |
| 138 | 122 137 | impbii | |- ( I ~<_ 1o <-> G e. CycGrp ) |