This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmco | ⊢ ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmhm | ⊢ ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) → 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ) | |
| 2 | ghmmhm | ⊢ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) | |
| 3 | mhmco | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MndHom 𝑈 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MndHom 𝑈 ) ) |
| 5 | ghmgrp1 | ⊢ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) | |
| 6 | ghmgrp2 | ⊢ ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) → 𝑈 ∈ Grp ) | |
| 7 | ghmmhmb | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑈 ∈ Grp ) → ( 𝑆 GrpHom 𝑈 ) = ( 𝑆 MndHom 𝑈 ) ) | |
| 8 | 5 6 7 | syl2anr | ⊢ ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑆 GrpHom 𝑈 ) = ( 𝑆 MndHom 𝑈 ) ) |
| 9 | 4 8 | eleqtrrd | ⊢ ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) |