This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powers of a group element give a homomorphism from ZZ to a group. The name .1. should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgghm2.m | ⊢ · = ( .g ‘ 𝑅 ) | |
| mulgghm2.f | ⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) | ||
| mulgghm2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | mulgghm2 | ⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → 𝐹 ∈ ( ℤring GrpHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgghm2.m | ⊢ · = ( .g ‘ 𝑅 ) | |
| 2 | mulgghm2.f | ⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) | |
| 3 | mulgghm2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | simpl | ⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → 𝑅 ∈ Grp ) | |
| 5 | zringgrp | ⊢ ℤring ∈ Grp | |
| 6 | 4 5 | jctil | ⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → ( ℤring ∈ Grp ∧ 𝑅 ∈ Grp ) ) |
| 7 | 3 1 | mulgcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 1 ∈ 𝐵 ) → ( 𝑛 · 1 ) ∈ 𝐵 ) |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ ) ∧ 1 ∈ 𝐵 ) → ( 𝑛 · 1 ) ∈ 𝐵 ) |
| 9 | 8 | an32s | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · 1 ) ∈ 𝐵 ) |
| 10 | 9 2 | fmptd | ⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → 𝐹 : ℤ ⟶ 𝐵 ) |
| 11 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 12 | 3 1 11 | mulgdir | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) · 1 ) = ( ( 𝑥 · 1 ) ( +g ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
| 13 | 12 | 3exp2 | ⊢ ( 𝑅 ∈ Grp → ( 𝑥 ∈ ℤ → ( 𝑦 ∈ ℤ → ( 1 ∈ 𝐵 → ( ( 𝑥 + 𝑦 ) · 1 ) = ( ( 𝑥 · 1 ) ( +g ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) ) ) ) |
| 14 | 13 | imp42 | ⊢ ( ( ( 𝑅 ∈ Grp ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 1 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) · 1 ) = ( ( 𝑥 · 1 ) ( +g ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
| 15 | 14 | an32s | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 + 𝑦 ) · 1 ) = ( ( 𝑥 · 1 ) ( +g ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
| 16 | zaddcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) |
| 18 | oveq1 | ⊢ ( 𝑛 = ( 𝑥 + 𝑦 ) → ( 𝑛 · 1 ) = ( ( 𝑥 + 𝑦 ) · 1 ) ) | |
| 19 | ovex | ⊢ ( ( 𝑥 + 𝑦 ) · 1 ) ∈ V | |
| 20 | 18 2 19 | fvmpt | ⊢ ( ( 𝑥 + 𝑦 ) ∈ ℤ → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑥 + 𝑦 ) · 1 ) ) |
| 21 | 17 20 | syl | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑥 + 𝑦 ) · 1 ) ) |
| 22 | oveq1 | ⊢ ( 𝑛 = 𝑥 → ( 𝑛 · 1 ) = ( 𝑥 · 1 ) ) | |
| 23 | ovex | ⊢ ( 𝑥 · 1 ) ∈ V | |
| 24 | 22 2 23 | fvmpt | ⊢ ( 𝑥 ∈ ℤ → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 · 1 ) ) |
| 25 | oveq1 | ⊢ ( 𝑛 = 𝑦 → ( 𝑛 · 1 ) = ( 𝑦 · 1 ) ) | |
| 26 | ovex | ⊢ ( 𝑦 · 1 ) ∈ V | |
| 27 | 25 2 26 | fvmpt | ⊢ ( 𝑦 ∈ ℤ → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 · 1 ) ) |
| 28 | 24 27 | oveqan12d | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 · 1 ) ( +g ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 · 1 ) ( +g ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
| 30 | 15 21 29 | 3eqtr4d | ⊢ ( ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 31 | 30 | ralrimivva | ⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 32 | 10 31 | jca | ⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → ( 𝐹 : ℤ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 33 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 34 | zringplusg | ⊢ + = ( +g ‘ ℤring ) | |
| 35 | 33 3 34 11 | isghm | ⊢ ( 𝐹 ∈ ( ℤring GrpHom 𝑅 ) ↔ ( ( ℤring ∈ Grp ∧ 𝑅 ∈ Grp ) ∧ ( 𝐹 : ℤ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 36 | 6 32 35 | sylanbrc | ⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → 𝐹 ∈ ( ℤring GrpHom 𝑅 ) ) |