This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv . (Contributed by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpteqb | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ V ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 3 | fneq1 | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ) | |
| 4 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 5 | 4 | mptfng | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 6 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 7 | 6 | mptfng | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 8 | 3 5 7 | 3bitr4g | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) ) |
| 9 | 8 | biimpd | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) ) |
| 10 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) ) | |
| 11 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 12 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 13 | 11 12 | nfeq | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 14 | simpll | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 15 | 14 | fveq1d | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) |
| 16 | 4 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 17 | 16 | ad2ant2lr | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 18 | 6 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ V ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 19 | 18 | ad2ant2l | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 20 | 15 17 19 | 3eqtr3d | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐵 = 𝐶 ) |
| 21 | 20 | exp31 | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( 𝑥 ∈ 𝐴 → ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → 𝐵 = 𝐶 ) ) ) |
| 22 | 13 21 | ralrimi | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → 𝐵 = 𝐶 ) ) |
| 23 | ralim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → 𝐵 = 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |
| 25 | 10 24 | biimtrrid | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |
| 26 | 25 | expd | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V → ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) ) |
| 27 | 9 26 | mpdd | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |
| 28 | 27 | com12 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |
| 29 | eqid | ⊢ 𝐴 = 𝐴 | |
| 30 | mpteq12 | ⊢ ( ( 𝐴 = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 31 | 29 30 | mpan | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 32 | 28 31 | impbid1 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |
| 33 | 2 32 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |