This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frgpnabl.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| Assertion | frgpnabl | ⊢ ( 1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpnabl.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 2 | relsdom | ⊢ Rel ≺ | |
| 3 | 2 | brrelex2i | ⊢ ( 1o ≺ 𝐼 → 𝐼 ∈ V ) |
| 4 | 1sdom | ⊢ ( 𝐼 ∈ V → ( 1o ≺ 𝐼 ↔ ∃ 𝑎 ∈ 𝐼 ∃ 𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 1o ≺ 𝐼 → ( 1o ≺ 𝐼 ↔ ∃ 𝑎 ∈ 𝐼 ∃ 𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏 ) ) |
| 6 | 5 | ibi | ⊢ ( 1o ≺ 𝐼 → ∃ 𝑎 ∈ 𝐼 ∃ 𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏 ) |
| 7 | eqid | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 8 | eqid | ⊢ ( ~FG ‘ 𝐼 ) = ( ~FG ‘ 𝐼 ) | |
| 9 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 10 | eqid | ⊢ ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 11 | eqid | ⊢ ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) = ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 12 | eqid | ⊢ ( ( I ‘ Word ( 𝐼 × 2o ) ) ∖ ∪ 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ran ( ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) ‘ 𝑥 ) ) = ( ( I ‘ Word ( 𝐼 × 2o ) ) ∖ ∪ 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ran ( ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) ‘ 𝑥 ) ) | |
| 13 | eqid | ⊢ ( varFGrp ‘ 𝐼 ) = ( varFGrp ‘ 𝐼 ) | |
| 14 | 3 | ad2antrr | ⊢ ( ( ( 1o ≺ 𝐼 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼 ) ) ∧ 𝐺 ∈ Abel ) → 𝐼 ∈ V ) |
| 15 | simplrl | ⊢ ( ( ( 1o ≺ 𝐼 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼 ) ) ∧ 𝐺 ∈ Abel ) → 𝑎 ∈ 𝐼 ) | |
| 16 | simplrr | ⊢ ( ( ( 1o ≺ 𝐼 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼 ) ) ∧ 𝐺 ∈ Abel ) → 𝑏 ∈ 𝐼 ) | |
| 17 | simpr | ⊢ ( ( ( 1o ≺ 𝐼 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼 ) ) ∧ 𝐺 ∈ Abel ) → 𝐺 ∈ Abel ) | |
| 18 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 19 | 8 13 1 18 | vrgpf | ⊢ ( 𝐼 ∈ V → ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 20 | 14 19 | syl | ⊢ ( ( ( 1o ≺ 𝐼 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼 ) ) ∧ 𝐺 ∈ Abel ) → ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 21 | 20 15 | ffvelcdmd | ⊢ ( ( ( 1o ≺ 𝐼 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼 ) ) ∧ 𝐺 ∈ Abel ) → ( ( varFGrp ‘ 𝐼 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐺 ) ) |
| 22 | 20 16 | ffvelcdmd | ⊢ ( ( ( 1o ≺ 𝐼 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼 ) ) ∧ 𝐺 ∈ Abel ) → ( ( varFGrp ‘ 𝐼 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝐺 ) ) |
| 23 | 18 9 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐺 ) ∧ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( ( varFGrp ‘ 𝐼 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ 𝑏 ) ) = ( ( ( varFGrp ‘ 𝐼 ) ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ 𝑎 ) ) ) |
| 24 | 17 21 22 23 | syl3anc | ⊢ ( ( ( 1o ≺ 𝐼 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼 ) ) ∧ 𝐺 ∈ Abel ) → ( ( ( varFGrp ‘ 𝐼 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ 𝑏 ) ) = ( ( ( varFGrp ‘ 𝐼 ) ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ 𝑎 ) ) ) |
| 25 | 1 7 8 9 10 11 12 13 14 15 16 24 | frgpnabllem2 | ⊢ ( ( ( 1o ≺ 𝐼 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼 ) ) ∧ 𝐺 ∈ Abel ) → 𝑎 = 𝑏 ) |
| 26 | 25 | ex | ⊢ ( ( 1o ≺ 𝐼 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼 ) ) → ( 𝐺 ∈ Abel → 𝑎 = 𝑏 ) ) |
| 27 | 26 | con3d | ⊢ ( ( 1o ≺ 𝐼 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼 ) ) → ( ¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel ) ) |
| 28 | 27 | rexlimdvva | ⊢ ( 1o ≺ 𝐼 → ( ∃ 𝑎 ∈ 𝐼 ∃ 𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel ) ) |
| 29 | 6 28 | mpd | ⊢ ( 1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel ) |