This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eftl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| Assertion | eftlcvg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eftl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | 1 | efcllem | ⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 4 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 5 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) | |
| 6 | 1 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 8 | eftcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) | |
| 9 | 8 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 10 | 7 9 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 11 | 4 5 10 | iserex | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( seq 0 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 12 | 3 11 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |