This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a sequence shifted by -u A . (Contributed by NM, 18-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftval4 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift - 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 3 | 1 | shftval | ⊢ ( ( - 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift - 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( 𝐵 − - 𝐴 ) ) ) |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift - 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( 𝐵 − - 𝐴 ) ) ) |
| 5 | subneg | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 − - 𝐴 ) = ( 𝐵 + 𝐴 ) ) | |
| 6 | 5 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 − - 𝐴 ) = ( 𝐵 + 𝐴 ) ) |
| 7 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) | |
| 8 | 6 7 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 − - 𝐴 ) = ( 𝐴 + 𝐵 ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐹 ‘ ( 𝐵 − - 𝐴 ) ) = ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 10 | 4 9 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift - 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) |